Olefin

Allgemeine Strukturformel für Alkene mit einer Doppelbindung

Unter Alkenen (früher auch Olefine) werden chemische Verbindungen aus der Gruppe der Kohlenwasserstoffe verstanden, die an beliebiger Position eine oder mehrere Doppelbindungen zwischen zwei Kohlenstoffatomen besitzen. Alkene sind ungesättigte Verbindungen im Gegensatz zu den Alkanen, bei denen alle Valenzen des Kohlenstoffatoms abgedeckt (gesättigt) sind. Alkene kommen im geringen Maßstab im Erdöl vor, in der Natur werden sie als Pheromone und Phytohormone verwendet.

Alkene mit einer Doppelbindung bilden eine homologe Reihe mit der allgemeinen Summenformel CnH2n beginnend mit dem Ethen. Der veraltete Name Olefine ergibt sich aus dem alten Namen Olefin von Ethen, da es mit Halogenen ölige, wasserunlösliche Flüssigkeiten bildet, die aus Halogenalkanen bestehen. Es gibt auch cyclische Alkene, die Cycloalkene, deren wichtigster Vertreter das Cyclohexen ist.

Inhaltsverzeichnis

Eigenschaften

Die Alkene sind von Ethen (C2H4) bis Buten (C4H8) gasförmig und damit leichtflüchtig. Von Penten mit 5 bis zu Pentadeken mit 15 Kohlenstoff-Atomen sind die Alkene flüssig. Alkene mit mehr als 15 Kohlenstoffatomen sind fest (jeweils unter Normalbedingungen). In Wasser sind Alkene unlöslich, sie verbrennen mit rußender Flamme. Die Alkene sind reaktionsfreudig. Die schwache Doppelbindung bietet einen Angriffspunkt für Reagenzien, genauer ist es die π-Bindung, welche elektrophil angegriffen wird. Alkene reagieren mit Halogenen zu Halogenalkanen. Dies geschieht durch eine elektrophile Addition. Hier die wichtigsten Alkene von Ethen (C2H4) bis Decen (C10H20) mit Namen und Summenformeln:

Die allgemeine Summenformel lautet: CnH2n

Nomenklatur und Isomere

But-1-en und trans-But-2-en

Allgemein werden Alkene nach IUPAC analog zu Alkanen benannt, wobei das Suffix -an durch -en ersetzt wird.

Die Position der Doppelbindung in der Kohlenstoffkette wird im Namen durch eine Zahl angegeben, die das Kohlenstoffatom bezeichnet, an dem die Doppelbindung beginnt. Sie gilt dabei als funktionelle Gruppe und muss für die Reihenfolge der Nummerierung berücksichtigt werden, also eine möglichst kleine Ziffer erhalten. Bei Molekülen mit mehreren funktionellen Gruppen wird die Zahl direkt vor das -en , sonst auch vor den Namen gestellt. Mehrfache Doppelbindungen erhalten vor das Suffix das entsprechende griechische Zahlwort gestellt.

Beispiele: Im Bild ist links But-1-en (auch n-Buten) dargestellt.

Neben der normalen Isomerie, bei der die Kohlenstoffatome unterschiedlich angeordnet sind, können bei Alkenen noch weitere Isomere auftreten: Die cis-trans-Isomerie und die Anordnung der Doppelbindung (Strukturisomerie).

Da die Doppelbindung im Gegensatz zur Einfachbindung nicht frei drehbar ist, kann es bei anhängenden Atomen oder Atomgruppen an der Doppelbindung zu zwei möglichen Anordnungen kommen. cis-trans-Isomere unterscheiden sich in ihren physikalischen und chemischen Eigenschaften. Sie lassen sich über das Dipolmoment und über IR-Spektroskopie unterscheiden. Während das cis im Verbindungsnamen erwähnt wird, kann man das trans auch weglassen.

Isomere des But-2-en

Am Beispiel der isomeren But-2-ene lässt sich die cis-trans-Isomerie nachvollziehen. Beim cis-But-2-en liegen beide Methylgruppen als Kettenreste diesseits (lat. cis), das heißt auf der gleichen Seite. Beim trans-But-2-en liegen die Methylgruppen auf der jeweils anderen (lat. trans) Seite der Doppelbindung.

Von IUPAC wurde die cis/trans-Bezeichnung ersetzt (da sie bei mehr als zwei Substituenten leicht in die Irre führt; man betrachte nur (E)-2-Brom-1-chlor-1-fluor-ethen!) durch E/Z, wobei (E) (entgegengesetzt) für trans steht und (Z) (zusammen) statt cis. Dabei wird die gegenseitige Lage der Substituenten höchster Priorität angegeben. Genauere Ausführungen siehe [[(E)-(Z)-Isomerie]].

Polyene

Alkene mit zwei Doppelbindungen nennt man Diene, mit drei Doppelbindungen Triene. Allgemein werden diese Polyene genannt. Die Benennung des Moleküls folgt hier denselben Regeln wie bei den einfach ungesättigten Alkenen, siehe 1,3-Butadien und Isopren. Die Anzahl der möglichen cis-trans-Isomere steigt dabei drastisch an, da es für jede der Doppelbindungen cis-trans-Isomere gibt.

Verwendung

Aufgrund der recht reaktiven Doppelbindung sind Alkene wichtige Ausgangsstoffe für viele andere Grundstoffe der chemischen Industrie.

Alkene werden als Treibstoffe und zur Herstellung von Halogenkohlenwasserstoffen, Alkoholen, Ketonen, Glykolen, Olefinoxiden, Kunststoffen und Waschmittelkomponenten gebraucht. Propen wird für die Synthese von z. B. Glycerin, Phenol, Isopropylalkohol, Epoxidharzen verwendet und für die Polymerisation von Polypropylen benötigt.

Herstellungsverfahren

Alkene können durch verschiedene Verfahren hergestellt werden. Eine Möglichkeit bildet die pyrolytische Dehydrierung und Spaltung von Alkanen (Cracking). Dabei werden bei 450–500 °C die kurzkettigen Alkanen in Gegenwart von Mischoxid-Katalysatoren in Alkene und Wasserstoff gespalten. Bei höheren Alkanen ist dieses Verfahren allerdings wenig sinnvoll, da dabei viele verschiedene Isomere entstehen können, deren Trennung sehr aufwendig, wenn nicht unmöglich ist. Eine weitere Möglichkeit Alkene herzustellen, ist die partielle Hydrierung von Alkinen. Dabei werden Alkine in der Gegenwart des Lindlar-Katalysators hydriert. Durch diesen leicht vergifteten Katalysator wird die Weiterhydrierung von Alkenen zu Alkanen verhindert. Dadurch, dass sich das Wasserstoffmolekül von einer Seite an die Dreifachbindung nähert, entstehen ausschließlich (Z)-Alkene.

Ethin reagiert unter Wasserstoffaufnahme zu Ethen

β-Eliminierungen

Allgemein können Verbindungen mit dem Strukturfragment CH-CX durch Abspaltung von HX zu einem Alken mit dem Strukturfragment C=C umgesetzt werden. Im Edukt mit dem Strukturfragment CH-CX sind dabei das H und die Gruppe X an direkt benachbarte C-Atomen gebunden.

Dehydratisierung

Die Dehydratisierung von Alkoholen finden in saurem Milieu statt. Aus tertiären Alkoholen lässt sich wesentlich leichter Wasser eliminieren als aus sekundären oder gar primären Alkoholen.

\mathrm{CH_3{-}CH_2{-}OH \longrightarrow CH_2{=}CH_2 + H_2O}
Ethanol wird zu Ethen und Wasser dehydratisiert.

Dehydrohalogenierung nach E2

Analog dazu lassen sich Halogenalkane zu Alkenen verwandeln. Diese als Dehydrohalogenierung bekannte Reaktion ist aber, im Gegensatz zur Dehydratisierung von Alkoholen, basenkatalysiert. Auch hier lassen sich tertiäre Halogenwasserstoffe leichter dehydrohalogenieren als sekundäre, und diese wiederum leichter als primäre Halogenwasserstoffe.

\mathrm{CH_3{-}CH_2{-}Cl \longrightarrow CH_2{=}CH_2 + HCl}
Chlorethan wird zu Ethen und Chlorwasserstoffsäure dehydrohalogeniert.

Saytzeff-Regel

Bei diesen β-Eliminierungen ist eine Regioselektivität zu beobachten. Unter Umständen können mehrere Produkte entstehen. Es gilt die Regel nach Saytzeff:

Neben der OH-Gruppe respektive dem Halogenatom wird der Wasserstoff von demjenigen Nachbar-C-Atom eliminiert, welches am wenigstens Wasserstoffe hat. Oder anders ausgedrückt, es entsteht das am höchsten substituierte Alken.

Reaktion von 2-Pentanol nach Saytzeff zu wenig 1-Penten und viel (E)-2-Penten und (Z)2-Penten

Dehalogenierung

Als dritte mögliche β-Eliminierung gibt es die Dehalogenierung von 1,2-Dihalogenalkanen. Dabei wird in Alkoholen während der Anwesenheit von Zink zwei gleichartige Halogenatome von benachbarten Kohlenstoffatomen eliminiert. Dabei entsteht das Alken und das Halogen in atomarer Form:

\mathrm{Br{-}CH_2{-}CH_2{-}Br \longrightarrow CH_2{=}CH_2 + Br_2}
1,2-Dibromethan wird zu Ethen und Brom dehalogeniert.

Dehydrierung

Alkene können durch partielle Dehydrierung aus Alkanen gewonnen werden. Man eliminiert hierzu Wasserstoff aus dem entsprechenden Alkan. Die Anzahl der Kohlenstoffatome bleibt gleich.

\mathrm{CH_3{-}CH_3 \longrightarrow CH_2{=}CH_2 + H_2}

Typische Reaktionen

Der für Alkene typische Reaktionsmechanismus ist die Elektrophile Addition. Auf dieser Reaktion beruht auch die typische Nachweismethode für Alkene, die Bromwasserprobe: dabei gibt man Alkene oder andere ungesättigte Kohlenwasserstoffe mit braun gefärbtem Bromwasser zusammen, wobei Brom an das Alken addiert wird und eine rasche Entfärbung des Gemisches eintritt.

Addition von Halogenwasserstoffen

Die Addition von Halogenwasserstoffen verläuft ähnlich, wie die Addition von Halogenen – wie Brom. Obwohl bei der Addition an unsymmetrische Alkene theoretisch verschiedene Reaktionsprodukte denkbar sind, je nach dem, an welches an der Doppelbindung beteiligte C-Atom das Halogenatom angelagert wird, gibt es nach der Markownikow-Regel eine bevorzugte Variante.

Regioselektive Reaktion – Markownikow-Regel

Mit einer regioselektiven Reaktion bezeichnet man eine chemische Veränderung, die vorzugsweise an einer von mehreren möglichen Stellen eintritt. Es bildet sich durch Reaktion mit dem Proton H+ der Halogenwasserstoffsäure als Zwischenprodukt stets das stabilste Carbeniumion. Mesomerieeffekte sind für diese Betrachtung stets wichtiger als induktive Effekte. Das Halogenid addiert sich dann an das C+ des Carbeniumions. Wenn keine Mesomeriestabilisierung des Carbeniumions möglich ist, kann die Markownikow-Regel angewandt werden: Bei unsymmetrischen Alkenen erfolgt die elektrophilen Addition von Halogenwasserstoffen so, dass das Halogen bevorzugt an das Kohlenstoffatom bindet, das die wenigsten Wasserstoffatome besitzt; das Wasserstoff-Atom dagegen an das wasserstoffreichste Kohlenstoff-Atom. Grund dafür ist, dass Alkylgruppen als Elektronendonatoren wirken (+I-Effekt und Hyperkonjugation) und dadurch die Verteilung (Delokalisation) der positiven Ladung begünstigen. Die Stabilität der positiven Carbeniumionen ist um so größer, je mehr Alkylgruppen an dem geladenen Kohlenstoffatom gebunden sind. Deshalb ist ein tertiäres Carbeniumionen stabiler als ein sekundäres und primäres. Dasselbe gilt ebenfalls für Radikale (siehe Abweichung #2), da diese auch unter Elektronenmangel leiden.

Abweichungen von der Markownikow-Regel treten unter anderem bei radikalischen Addition und der Hydroborierung auf. Bei diesen Reaktionen entsteht das Anti-Markownikow-Produkt: -Bei der Hydroborierung wird das Boratom (Elektrophil) an das negativer teilgeladene Kohlenstoffatom (niedriger substituiert) der Doppelbindung addiert, wohingegen das Wasserstoffatom (Nucleophil) an dem positiv teilgeladenen Kohlenstoffatom (höher substituiert) addiert wird. Da das Wasserstoffatom meistens das Elektrophil ist, bewirkt dieser Rollentausch einen Bruch mit der Regel. -Bei der radikalischen Addition von z.B. Bromwasserstoff greift nicht die Doppelbindung das Elektrophil (Wasserstoff) an, sondern ein Bromradikal die Doppelbindung. Dabei bindet das Bromatom an dem niedriger substituierten Kohlenstoffatom, damit das Radikal am höhersubstituierten entsteht. Durch Hyperkonjugation mit den Substituenten und durch +I-Effekt kann so der Elektronenmangel am Radikal stabilisiert werden. Erst danach greift dieses Radikal ein weiteres H-Br Molekül an und erlangt so sein Wasserstoffatom, das sich dann am höhersubstituierten Kohlenstoffatom befindet und somit gegen die Regel verstößt.

Reaktion mit konzentrierter Schwefelsäure

Die Anlagerung erfolgt nach der Markownikow-Regel, es sei denn Mesomerieeffekte dominieren. Technisch dient dieses Verfahren zur Darstellung von Alkoholen aus Alkenen. Alkylschwefelsäure ist durch Hydrolyse leicht in Alkohole zu überführen.

Reaktion mit hypochloriger Säure

Diese Reaktion ist regioselektiv. Das Chloratom lagert sich an das C-Atom an, welches die meisten Wasserstoff-Atome trägt, wenn keine mesomeren Effekte auftreten. Ebenso läuft die Reaktion mit Nitrosylchlorid und Nitrosylbromid an Alkene unter Addition.

Reaktion mit einem Oxidationsmittel

Die Oxidation erfolgt entweder mit Osmiumtetroxid oder mit alkalischer Kaliumpermanganatlösung. Zuerst entsteht unter einer cis-Addition ein cyclischer Ester, die Hydrolyse führt zu einem cis-1,2-Diol.

Ozonierung von C=C-Doppelbindungen

Wenn Ozon in wasserfreies Alken geleitet wird, bilden sich Ozonide, die im trockenen Zustand explosiv sind. Die Ozonolyse spaltet dabei die Doppelbindung komplett und ist somit für die Ermittlung des Aufbaus einer Kohlenstoffkette eine wichtige Reaktion, da die Spaltprodukte Aufschluss über die Lage der Doppelbindung geben. Das Ozon kann durch Entladung aus Luftsauerstoff in einem Ozonisator erzeugt werden.

Katalytische Hydrierung

Die Hydrierung ist die Addition von Wasserstoff an die Doppelbindung, die dadurch zur Einfachbindung wird, mit Hilfe eines Katalysators. Die Reaktion erfolgt bei Raumtemperatur in Gegenwart von Platin oder Palladium, das mit Wasserstoff gesättigt ist. Beispiel:

\mathrm{C_2H_4 \ + \ H_2 \xrightarrow{Kat.} \ C_2H_6}
Ethen wird zu Ethan hydriert.

Nachweis

Zum unspezifischen Nachweis der Doppelbindung, besonders zur Unterscheidung von den Alkanen, wird ein Alken (z. B. Ethen) in braunes Bromwasser eingeleitet. Die Alken-Moleküle addieren an jedem C-Atom der C=C-Doppelbindung nach dem Reaktionsmechanismus der elektrophilen Addition ein Brom-Atom; als Reaktionsprodukt bildet sich das entsprechende Halogenalkan. Zum Beispiel:

\mathrm{Br_2 + C_2H_4 \longrightarrow C_2H_4Br_2}
Brom und Ethen reagieren zu 1,2-Dibromethan

Das Bromwasser entfärbt sich aufgrund dieser Reaktion, ein eingeleitetes Alkan würde das braune Bromwasser nicht entfärben. Phenole und viele reduzierende Verbindungen entfärben jedoch ebenfalls eine Bromlösung.

Die sogenannte Baeyer-Probe dient zum allgemeinen Nachweis von C=C-Doppelbindungen (auch Alkene). Das Alken wird in eine Kaliumpermanganat-Lösung im schwach alkalischen oder sauren Milieu eingeleitet, worauf sich die Lösung braun färbt bzw. farblos wird. Es entstehen ein Alkohol und Braunstein bzw. Mangan(II)-Ionen.

Literatur

  • Hans Beyer, Wolfgang Walter: Lehrbuch der organischen Chemie. Hirzel Verlag, Stuttgart 2004, ISBN 3-7776-1221-9.
  • Reinhard Brückner: Reaktionsmechanismen. Organische Reaktionen, Stereochemie, moderne Synthesemethoden. Spektrum Akademischer Verlag, Heidelberg 2004, ISBN 3-8274-1579-9.
  • Ulfert Onken, Arno Behr: Chemische Prozeßkunde (Lehrbuch der technischen Chemie; 3). Georg Thieme Verlag, Stuttgart 1996, ISBN 3-13-687601-6.
  • K. Peter C. Vollhardt, Niel E. Schore: Organische Chemie. Wiley-VCH, Weinheim 2005, ISBN 3-527-31380-X.
  • Klaus Weissermel, Hans-Jürgen Arpe: Industrielle organische Chemie. Bedeutende Vor- und Zwischenprodukte. Wiley-VCH, Weinheim 1998, ISBN 3-527-28856-2.

Wikimedia Foundation.

Schlagen Sie auch in anderen Wörterbüchern nach:

  • olefin — o le*fin, olefine o le*fine([=o] l[ e]*f[i^]n or [=o] l[ e]*f[=e]n), n. [From {Olefiant}.] 1. (Chem.) Olefiant gas, or ethylene. See {Ethylene}. [archaic] [1913 Webster] 2. Hence: (Chem.) Any one of the series of unsaturated hydrocarbons of which …   The Collaborative International Dictionary of English

  • olefin — [ō′ləfin, ō′ləfēn΄ō′lə fin] n. [< Fr ( gaz) oléfiant < L oleum,OIL + prp. of Fr fier, to make < L facere: see DO1] ALKENE: also olefine [ō′ləfin, ō′ləfēn΄] olefinic [ō′ləfin′ik] adj …   English World dictionary

  • olefin —    An alkene. An organic compound similar to an alkane, but containing at least one double bond. Olefins have the formula CnH2n. The simplest olefin is ethylene, C2H4 …   Forensic science glossary

  • olefin — alkenas statusas T sritis chemija apibrėžtis Alifatinis angliavandenilis, turintis vieną dvigubąjį ryšį. atitikmenys: angl. alkene; olefin rus. алкен; олефин ryšiai: sinonimas – etileninis angliavandenilis …   Chemijos terminų aiškinamasis žodynas

  • olefin — noun Etymology: International Scientific Vocabulary, from French (gaz) oléfiant ethylene, from Latin oleum Date: 1860 1. alkene 2. a synthetic fiber (as polypropylene) derived from an alkene • olefinic adjective …   New Collegiate Dictionary

  • olefin — olefinic, adj. /oh leuh fin/, n. Chem. any member of the alkene series. Also, olefine /oh leuh fin, feen /. [1855 60; < F oléf(iant) (see OLEFIANT GAS) + IN2] * * * or alkene Any unsaturated hydrocarbon containing one or more pairs of carbon… …   Universalium

  • olefin — noun Any of a class of unsaturated open chain hydrocarbons such as ethylene; an alkene with only one carbon carbon double bond …   Wiktionary

  • olefin — SYN: alkene. * * * ole·fin ō lə fən n ALKENE ole·fin·ic .ō lə fin ik adj * * * ole·fin (oґlə fin) [oleo + L. facere to make] any of a class of unsaturated aliphatic hydrocarbons having one or more double bonds; those with one double bond are …   Medical dictionary

  • Olefin — O|le|fin [frz. gaz oléfiant = ölmachendes Gas, vgl. Öl der holländischen Chemiker], das; s, e: historische Sammelbez. für Alkene, auch in Zus. wie Diolefine, Triolefine (Diene, Triene) oder Cycloolefine (Cycloalkene). Unter Polyolefinen versteht… …   Universal-Lexikon

  • olefin — is., kim., Fr. oléfine Etilen gibi yapısına başka bir öge veya kök sokulabilen, karbonlu hidrojenlerin genel adı …   Çağatay Osmanlı Sözlük

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”

We are using cookies for the best presentation of our site. Continuing to use this site, you agree with this.