Solarzelle

ï»ż
Solarzelle
Polykristalline Silizium-Solarzellen in einem Solarmodul

Eine Solarzelle oder photovoltaische Zelle ist ein elektrisches Bauelement, das kurzwellige Strahlungsenergie, in der Regel Sonnenlicht, direkt in elektrische Energie umwandelt. Die Anwendung der Solarzelle ist die Photovoltaik. Die physikalische Grundlage der Umwandlung ist der photovoltaische Effekt, der ein Sonderfall des inneren photoelektrischen Effekts ist.

Solarzellen unterscheiden sich dadurch grundsĂ€tzlich von anderen Arten der regenerativen ElektrizitĂ€tserzeugung, bei denen lediglich die Antriebsenergie fĂŒr den Generator nichtkonventionell erzeugt wird.

Manchmal werden auch Elemente eines Sonnenkollektors als Solarzelle bezeichnet. Sie erzeugen aber keinen elektrischen Strom, sondern ProzesswÀrme und ersetzen beispielsweise Warmwasser-Boiler.

Inhaltsverzeichnis

Einteilung

Solarpanel
Schwarzlichttest der GaAs-Triple-Junction-Solarzellen der Raumsonde Dawn[1]

Solarzellen kann man nach verschiedenen Kriterien einordnen. Das gĂ€ngigste Kriterium ist die Materialdicke. Hier wird nach Dickschicht- und DĂŒnnschichtzellen unterschieden.

Ein weiteres Kriterium ist das Material: Es werden zum Beispiel die Halbleitermaterialien CdTe, GaAs oder Kupfer-Indium-Selen-Verbindungen eingesetzt, weltweit am hÀufigsten jedoch Silizium.

Die Kristallstruktur kann kristallin (mono-/polykristallin) oder amorph sein.

Neben Halbleitermaterialien gibt es auch neue AnsÀtze zum Material, wie organische Solarzellen und Farbstoffsolarzellen.

Materialien

  1. Siliziumzellen
    • Dickschicht
      • Monokristalline Siliziumzellen (c-Si) weisen im großtechnischen Einsatz einen Wirkungsgrad ĂŒber 20 % und eine Leistungsdichte 20–50 W/kg auf. Die Technik gilt als gut beherrscht, die Herstellung erfordert allerdings einen sehr hohen Energieeinsatz, der sich negativ auf die EnergierĂŒcklaufzeit auswirkt.
      • Polykristalline Zellen, auch Multikristalline Zellen genannt (poly-Si oder mc-Si), besitzen relativ kurze EnergierĂŒcklaufzeiten, derzeit die Zelle mit dem gĂŒnstigsten Preis-Leistungs-VerhĂ€ltnis (Stand: September 2008). Sie erreichen inzwischen im großtechnischen Einsatz Wirkungsgrade bis zu 16 %. Experimentelle Zellen erreichen Wirkungsgrade bis zu 18,6 %[2].
    • DĂŒnnschicht
      • Amorphes Silizium (a-Si) besitzen zur Zeit den grĂ¶ĂŸten Marktanteil bei den DĂŒnnschichtzellen. Die Modulwirkungsgrade liegen zwischen 5 und 7 % und haben eine Leistungsdichte bis ca. 2000 W/kg. Derzeit gibt es keine MaterialengpĂ€sse selbst bei Produktion im Terawatt-Maßstab.
      • Kristallines Silizium, z. B. mikrokristallines Silizium (”c-Si), wird oft in Kombination mit amorphem Silizium als Tandemzellen eingesetzt und erreicht so höhere Wirkungsgrade bis 10 %[3]. Hergestellt werden sie Ă€hnlich wie Solarzellen aus amorphem Silizium.
    • Si Wire Array (Laborstadium): Durch BestĂŒcken einer OberflĂ€che mit dĂŒnnsten DrĂ€hten ist diese neue Solarzelle biegsam und benötigt nur 1 % der Siliziummenge verglichen mit herkömmlichen Solarzellen.[4][5]
  2. III-V-Halbleiter-Solarzellen
    • GaAs-Zellen zeichnen sich durch hohe Wirkungsgrade (im Jahr 2009 experimentell bis 41,1 %[6]), sehr gute TemperaturbestĂ€ndigkeit, geringerem Leistungsabfall bei ErwĂ€rmung als kristalline Siliziumzellen und Robustheit gegenĂŒber UV-Strahlung aus. Sie sind allerdings sehr teuer in der Herstellung. Eingesetzt werden sie hĂ€ufig in der Raumfahrt (Galliumindiumphosphid, (Ga,In)P/Galliumarsenid, GaAs/Germanium, Ge). Tripelzellen (Mehrfachsolarzellen mit drei monolithisch gestapelten p-n-ÜbergĂ€ngen) haben den höchsten kommerziell lieferbaren Wirkungsgrad von fast 30 % mit einer Leistungsdichte von 50 W/kg (bei 17 % um 1000 W/kg).[7]
  3. II-VI-Halbleiter-Solarzellen
  4. I-III-VI-Halbleiter-Solarzellen
    • CIS-, CIGS-Solarzellen (Chalkopyrite) bestehen aus Kupfer-Indium-Gallium-Diselenid bzw. Kupfer-Indium-Disulfid. Dieses Material findet Anwendung in DĂŒnnschichtsolarzellen – hier ist CIGS das leistungsstĂ€rkste Material mit Laborwirkungsgraden von mittlerweile 20,3 % (Juli 2010[8]). Der Modul-Wirkungsgrad betrĂ€gt 10–12 %.
  5. Organische Solarzellen (OPV): Die organische Chemie liefert Werkstoffe, die möglicherweise eine kostengĂŒnstige Fertigung von Solarzellen erlauben. Bisheriger Nachteil ist ihr deutlich schlechterer Wirkungsgrad von ca. 8% (Stand Juli 2010)[9] und die recht kurze Lebensdauer (max. 5000 h) der Zellen.
  6. Farbstoffzellen oder auch GrĂ€tzel-Zellen nutzen organische Farbstoffe zur Umwandlung von Licht in elektrische Energie; ein Vorgang, der an die Photosynthese anlehnt. Sie sind meistens lila. Diese Zellen liefern den besten Wirkungsgrad aller organischen Solarzellen von ĂŒber 10 %, haben jedoch aufgrund aggressiver Elektrolyte eine begrenzte Lebensdauer.
  7. Halbleiter-Elektrolytzellen: z. B. Kupferoxid/NaCl-Lösung. Sehr einfach herstellbare Zelle, jedoch in LeistungsfĂ€higkeit und ZuverlĂ€ssigkeit limitiert.

MaterialverfĂŒgbarkeit

Silizium, der Grundstoff fĂŒr die Solarzellen, steht in nahezu unbegrenzter Menge zur VerfĂŒgung. Die vor einiger Zeit aufgetretenen MaterialengpĂ€sse an reinem Silizium, die durch unzureichende ProduktionskapazitĂ€ten hervorgerufen wurden, konnten durch Erhöhung der KapazitĂ€ten inzwischen beseitigt werden. Deshalb sinken die Preise fĂŒr Solarzellen stark.[10].

Bei exotischeren Solarzellenmaterialien wie etwa beim Indium, Gallium, Tellur und Selen sieht die Situation grundlegend anders aus. Bei den seltenen Metallen Indium und Gallium ĂŒberschreitet bereits derzeit der weltweite Verbrauch (Indium etwa 850 Tonnen, bei Gallium etwa 165 Tonnen) die jĂ€hrliche Produktionsmenge um ein Mehrfaches.[11] Besonders nachteilig ist der stark steigende Verbrauch von Indium in Form von Indium-Zinn-Oxid in der FlĂŒssigkristall- und OLED-Bildschirmherstellung, sowie die Verwendung von Gallium und Indium in der Produktion von Leuchtdioden, die sich als energiesparender GlĂŒhlampenersatz und als Hintergrundbeleuchtung fĂŒr Flachbildschirme derzeit in der MarkteinfĂŒhrung befinden.

Beim Indium wird zwischen den Jahren 2025 und 2035 mit einem Versiegen der Ressourcen gerechnet,[12] da sich die theoretischen IndiumvorrÀte im Jahr 2006 auf nur 6000 Tonnen, die ökonomisch abbaubaren Reserven auf sogar nur 2800 Tonnen beliefen.[13]

Die Situation bei Selen und beim noch selteneren Tellur (beide Halbmetalle liegen in geringer Konzentration im Anodenschlamm der Kupferelektrolyse vor) erscheint auf den ersten Blick weniger kritisch, da die Kupferproduzenten derzeit nur einen Teil des in Metallelektrolyse anfallenden Anodenschlamms zur Selen- oder Tellurgewinnung einsetzen. Die ökonomisch erschließbaren Selenreserven werden jedoch nur auf 82.000 Tonnen, die Tellurreserven gar auf nur 43.000 Tonnen geschĂ€tzt. Dies ist extrem wenig, selbst im Vergleich zu den Reserven des ebenfalls nicht besonders hĂ€ufigen Buntmetalls Kupfer von 550 Millionen Tonnen.

Problematisch ist, dass viele Produktionsprozesse, in denen Gallium, Indium, Selen und Tellur eingesetzt werden, eine ungĂŒnstige Materialökonomie aufweisen.

RecyclingansĂ€tze, die etwa beim Kupfer zum normalen Materialkreislauf gehören, greifen bei Gallium, Indium, Selen und Tellur nicht. Die Materialien werden meist in komplexe Vielstoff-Schichtstrukturen eingebunden und dadurch so fein verteilt, dass eine RĂŒckgewinnung auch in Zukunft vermutlich nicht möglich sein wird.

Bauformen

Ausnutzung der Sonnenstrahlung durch Silizium (mono- und polykristallin)
Ausnutzung der Sonnenstrahlung durch Galliumantimonid

Neben dem Material ist die Bauweise von Bedeutung. Man unterscheidet verschiedene OberflÀchenstrukturierungen und Anordnungen der Kontaktierung der transparenten, jedoch hochohmigen Deckelektrode (schmale oder sogar durchsichtige Kontakte).

Weitere Bauformen sind Stapeltechniken durch Materialkombinationen unterschiedlicher AbsorptionswellenlÀngen, wodurch der Wirkungsgrad der Gesamtanordnung erhöht werden kann. Es wird versucht, die Materialien so zu wÀhlen, dass das einfallende Sonnenspektrum maximal ausgenutzt wird.

Derzeitig sind kommerziell erhĂ€ltliche Solarzellen aus Halbleitermaterialien, ĂŒberwiegend aus Silizium. Auch III/V-Halbleitermaterialien werden verwendet (unter anderem an Raumsonden). Wegen ihrer hohen Kosten werden sie fĂŒr terrestrische Anwendungen in Konzentrator-Systemen verwendet. Polymere Solarzellen befinden sich noch in der Forschung.

Halbleitersolarzellen werden zur Energiegewinnung meist zu großen Solarmodulen verschaltet. Die Zellen werden dafĂŒr mit Leiterbahnen an Vorder- und RĂŒckseite in Reihe geschaltet. Dadurch addiert sich die Spannung der Einzelzellen, und es können dĂŒnnere DrĂ€hte fĂŒr die Verschaltung verwendet werden als bei einer Parallelschaltung. Als Schutz vor einem Lawinendurchbruch in den einzelnen Zellen (etwa bei Teilabschattung) mĂŒssen jedoch zusĂ€tzlich Schutz-Dioden (Bypass-Dioden) parallel zu den Zellen eingebaut werden, die von Abschattung betroffene Zellen ĂŒberbrĂŒcken können.

Solaranlagen werden manchmal mit einer mechanischen NachfĂŒhrung ausgestattet. Die Solaranlage wird dadurch elektrisch dem Sonnenstand angepasst, um die Ausbeute an elektrischer Energie aus der Sonnenenergie zu erhöhen.

Funktionsprinzip

Einfallende Photonen erzeugen Elektronen und Löcher, die im elektrischen Feld der Raumladungszone des p-n-Übergangs getrennt werden.
Bandstruktur einer einfachen pin-dotierten Siliziumsolarzelle

Solarzellen aus Halbleitermaterialien sind im Prinzip wie großflĂ€chige Photodioden aufgebaut. Sie werden jedoch nicht als Strahlungsdetektor, sondern als Stromquelle betrieben.

Die Besonderheit von Halbleitern ist, dass sie durch zugefĂŒhrte Energie (elektromagnetische Strahlung) freie LadungstrĂ€ger erzeugen (Elektronen und Löcher, siehe Generation). Um aus diesen Ladungen einen elektrischen Strom zu erzeugen, ist ein internes elektrisches Feld nötig, um die erzeugten LadungstrĂ€ger in unterschiedliche Richtungen zu lenken.

Dieses interne elektrische Feld wird durch einen p-n-Übergang erzeugt. Da Licht in Materialien gewöhnlich exponentiell schwĂ€cher wird, muss dieser Übergang möglichst nahe an der OberflĂ€che liegen, und die Übergangszone mit dem elektrischen Feld sollte möglichst weit in das Material hineinreichen. Diese Übergangszone (Raumladungszone) wird durch gezielte Dotierung des Materials eingestellt (siehe Halbleitertechnologie). Um das gewĂŒnschte Profil zu erzeugen, wird gewöhnlich eine dĂŒnne OberflĂ€chenschicht stark n-dotiert, die dicke Schicht darunter schwach p-dotiert. Das hat eine weitreichende Raumladungszone zur Folge. Wenn in dieser Übergangszone nun Photonen einfallen und Elektronen-Loch-Paare erzeugen (Photoeffekt), so werden durch das elektrische Feld die Löcher zum untenliegenden p-Material beschleunigt und umgekehrt die Elektronen zum n-Kontakt auf der (sonnenzugewandten) Oberseite. Ein Teil der LadungstrĂ€ger rekombiniert auf dieser Strecke und geht in WĂ€rme verloren, der ĂŒbrige Photostrom kann direkt von einem Verbraucher benutzt, in einem Akkumulator zwischengespeichert oder mit einem netzgefĂŒhrten Wechselrichter in das Stromnetz eingespeist werden. Die elektrische Spannung bei maximaler Leistung (Maximum Power Point, Leistungsanpassung) liegt bei den gebrĂ€uchlichsten Zellen (kristalline Siliziumzellen) bei etwa 0,5 V.

Die Struktur von Solarzellen wird des Weiteren so angepasst, dass möglichst viel Licht eingefangen wird und in der aktiven Zone LadungstrĂ€ger erzeugen kann. Dazu muss die Deckelektrode transparent sein, die Kontakte zu dieser Schicht mĂŒssen möglichst schmal sein, auf der Oberseite wird eine Antireflexionsschicht (zur Verringerung des Reflexionsgrades) aufgetragen. Die Antireflexionsschicht sorgt fĂŒr die typisch blĂ€uliche bis schwarze Farbe von Solarzellen. Unbeschichtete Solarzellen haben dagegen ein silbrig-graues Erscheinungsbild.

Manchmal wird die Vorderseite strukturiert oder aufgeraut. Wegen dieses Vorteils wurden ursprĂŒnglich Wafer mit Fehlern beim Schleifprozess o. a. als Ausgangsmaterial fĂŒr Solarzellen verkauft. Schwarzes Silizium hat eine aufgeraute, nadelförmige OberflĂ€che, die sehr geringe Reflexionen aufweist.

Die Antireflexschicht wird bei modernen Solarzellen aus Siliziumnitrid mittels PE-CVD-Verfahren hergestellt. Die Schichtdicke betrĂ€gt dabei ca. 70 nm (Lambda-Viertel bei einer Brechzahl von 2,0). DarĂŒber hinaus kommen noch Antireflexschichten aus Siliziumdioxid und Titandioxid, die beispielsweise per AP-CVD-Verfahren aufgebracht werden, zur Anwendung.

Über die Schichtdicke wird auch die Farbe bestimmt (Interferenzfarbe). Eine möglichst hohe GleichmĂ€ĂŸigkeit der BeschichtungsstĂ€rke ist dabei wichtig, da bereits Schwankungen um einige Nanometer in der SchichtstĂ€rke den Reflexionsgrad erhöhen. Blaue Reflexion ergibt sich aus der Einstellung der Antireflexschicht auf den roten Teil des Spektrums – der bevorzugten AbsorptionswellenlĂ€nge des Siliziums. Prinzipiell sind jedoch auch beispielsweise rote, gelbe oder grĂŒne Solarzellen auf diese Weise fĂŒr spezielle architektonische Anwendungen herstellbar, sie haben jedoch einen schlechteren Wirkungsgrad.

Im Falle von Siliziumnitrid und Siliziumdioxid erfĂŒllt die Antireflexschicht dabei noch die Funktion einer Passivierungsschicht, die die OberflĂ€chenrekombinationsgeschwindigkeit herabsetzt. Die an der OberflĂ€che erzeugten LadungstrĂ€ger können dadurch – vereinfacht ausgedrĂŒckt – nicht so schnell rekombinieren, und die erzeugte Ladung kann als Strom abgeleitet werden.

Typen von Silizium-Solarzellen

Polykristalline Solarzelle
Polykristalliner Wafer
Polykristallines Silizium

Das traditionelle Grundmaterial fĂŒr Halbleitersolarzellen ist Silizium. Bis in das Jahr 2005 wurde vor allem Restsilizium aus der Chipproduktion verwendet, heute wird zunehmend Silizium speziell fĂŒr die Solaranwendungen produziert. Silizium ist allgemein fĂŒr die Halbleitertechnik nahezu ideal. Es ist preiswert, lĂ€sst sich hochrein und einkristallin herstellen und als n- und p-Halbleiter dotieren. Einfache Oxidation ermöglicht die Herstellung dĂŒnner Isolationsschichten. Jedoch ist die AusprĂ€gung seiner BandlĂŒcke als indirekter Halbleiter fĂŒr optische Wechselwirkung wenig geeignet. Siliziumbasierte kristalline Solarzellen mĂŒssen eine Schichtdicke von mindestens 100 Â”m und mehr aufweisen, um Licht ausreichend stark zu absorbieren. Bei DĂŒnnschichtzellen direkter Halbleiter, wie z. B. Galliumarsenid oder auch Silizium mit stark gestörter Kristallstruktur (siehe unten) genĂŒgen 10 Â”m.

Je nach Kristallaufbau unterscheidet man bei Silizium folgende Typen:

  • Monokristalline Zellen werden aus sogenannten Wafern (einkristalline Siliziumscheiben) hergestellt, wie sie auch fĂŒr die Halbleiterherstellung verwendet werden. Sie sind verhĂ€ltnismĂ€ĂŸig teuer.
  • Polykristalline Zellen bestehen aus Scheiben, die nicht ĂŒberall die gleiche Kristallorientierung aufweisen. Sie können z. B. durch Gießverfahren (s. u.) hergestellt werden und sind preiswerter und in Photovoltaikanlagen am meisten verbreitet.
  • Amorphe Solarzellen bestehen aus einer dĂŒnnen, nichtkristallinen (amorphen) Siliziumschicht und werden daher auch als DĂŒnnschichtzellen bezeichnet. Sie können etwa durch Aufdampfen hergestellt werden und sind preiswert, haben im Sonnenlicht einen nur geringen Wirkungsgrad, bieten jedoch Vorteile bei wenig Licht, Streulicht und bei hoher Betriebstemperatur. Zu finden sind die amorphen Zellen beispielsweise auf Taschenrechnern oder Uhren.
  • Mikrokristalline Zellen sind DĂŒnnschichtzellen mit mikrokristalliner Struktur. Sie weisen einen höheren Wirkungsgrad als amorphe Zellen auf und sind nicht so dick wie die gĂ€ngigen polykristallinen Zellen. Sie werden teilweise fĂŒr Photovoltaikanlagen verwendet, sind jedoch noch nicht sehr weit verbreitet.
  • Tandem-Solarzellen sind ĂŒbereinander geschichtete Solarzellen, meist eine Kombination von polykristallinen und amorphen Zellen. Die einzelnen Schichten bestehen aus unterschiedlichem Material und sind so auf einen anderen WellenlĂ€ngenbereich des Lichtes abgestimmt. Die zuoberst angeordneten Zellen absorbieren nur einen Teil des Lichtspektrums, der Rest kann durchtreten und von der darunter angeordneten Schicht verwertet werden. Durch ein breiteres AusnĂŒtzen des Lichtspektrums der Sonne haben diese Zellen einen besseren Wirkungsgrad als einfache Solarzellen. Sie werden teilweise bei Photovoltaikanlagen verwendet, sind jedoch noch relativ teuer.

Herstellung aus Siliziumblöcken oder -stÀben

Solarzellen können nach verschiedenen Verfahren hergestellt werden.

Silizium-Einkristall zur Waferherstellung, hergestellt nach dem Czochralski-Verfahren

Das Grundmaterial Silizium ist das zweithĂ€ufigste chemische Element, das in der Erdkruste vorkommt. Es liegt in Form von Silikaten oder als Quarz vor. Aus Quarzsand kann in einem Hochofenprozess Rohsilizium, sogenanntes metallurgisches Silizium, mit Verunreinigungen von circa 1 bis 2 % hergestellt werden. 2005 wurden auf diese Weise 4,7 Mio. Tonnen Silizium hergestellt. Ein Großteil davon geht in die Stahlindustrie und in die Chemische Industrie. Nur ein kleiner Anteil des metallurgischen Siliziums wird fĂŒr die Mikroelektronik und die Photovoltaik verwendet. Aus dem Rohsilizium wird dann ĂŒber einen mehrstufigen auf Trichlorsilan basierenden Prozess polykristallines Reinstsilizium hergestellt. Das bis heute (2006) hier angewendete Siemens-Verfahren[14], ein CVD-Verfahren, wurde allerdings fĂŒr die Mikroelektronik entwickelt und optimiert. Dort werden zum Teil völlig andere Anforderungen an die QualitĂ€t des Siliziums gestellt als in der Photovoltaik. FĂŒr Solarzellen ist beispielsweise die Reinheit des Wafers in seiner gesamten StĂ€rke wichtig, um eine möglichst lange LadungstrĂ€ger-Lebensdauer zu gewĂ€hrleisten. In der Mikroelektronik mĂŒssten dagegen prinzipiell nur die oberen etwa 20 bis 30 Â”m hochrein sein. Da mittlerweile der Verbrauch an hochreinem Silizium fĂŒr die Photovoltaik den Verbrauch in der Mikroelektronik ĂŒbertroffen hat, wird zur Zeit intensiv an speziellen, kostengĂŒnstigeren und fĂŒr die Photovoltaik optimierten Herstellverfahren fĂŒr Solarsilizium gearbeitet.

Der gesamte Herstellprozess fĂŒr hochreines Silizium ist zwar sehr energieaufwendig, aber dennoch können die heute verwendeten Solarzellen die fĂŒr ihre Produktion erforderliche Energiemenge – je nach Bauart – innerhalb von 1,5 bis 5 Jahren wieder kompensieren. Sie haben also eine positive Energiebilanz.

Das Reinstsilizium kann auf unterschiedliche Weise weiterverarbeitet werden. FĂŒr polykristalline Zellen kommen grĂ¶ĂŸtenteils das Gießverfahren, das Bridgman-Verfahren und das kantenbegrenzte Bandziehverfahren (EFG-Verfahren, von engl. edge-defined film-fed growth) zum Einsatz. Monokristalline Zellen werden fast immer nach dem Czochralski-Verfahren hergestellt. Bei allen Verfahren gilt, dass die Dotierung mit Bor (siehe unten) schon beim Herstellen der Blöcke (Ingots) beziehungsweise StĂ€be vorgenommen wird.

Blockgussverfahren

Dieses Verfahren dient zur Herstellung von polykristallinem Silizium. Das Reinstsilizium wird in einem Tiegel mit Hilfe einer Induktionsheizung aufgeschmolzen und dann in eine quadratische Wanne gegossen, in der es möglichst langsam abgekĂŒhlt wird. Dabei sollen möglichst große Kristallite in den Blöcken entstehen. Die KantenlĂ€nge der Wanne betrĂ€gt etwa 50 cm, die Höhe der erstarrten Schmelze etwa 30 cm. Der große Block wird in mehrere kleine Blöcke von etwa 30 cm LĂ€nge zerteilt.

Ein weiteres Gießverfahren ist der Strangguss, wobei die Masse schon in der am Ende benötigten StĂ€rke auf das TrĂ€germaterial aufgebracht wird. Der Vorteil ist, dass ein SĂ€gevorgang mit seinen Verlusten entfĂ€llt.

Bridgman-Verfahren

Das Bridgman-Verfahren dient zur Herstellung von polykristallinem Silizium[15] und ist nach Percy Williams Bridgman benannt. Es ist nicht zu verwechseln mit der Bridgman-Stockbarger-Methode, die zur Herstellung von Monokristallen dient. Das Reinstsilizium wird hier ebenfalls in einem Tiegel mit Hilfe einer Induktionsheizung bei ĂŒber 1400 Â°C aufgeschmolzen. Die langsame AbkĂŒhlung der Schmelze, bei der sich große Zonen einheitlicher Kristalle ausbilden, findet hier im gleichen Tiegel statt. Die geheizte Zone wird langsam von unten nach oben im Tiegel angehoben, so dass sich oben bis zum Schluss flĂŒssiges Silizium befindet, wĂ€hrend vom Tiegelboden her das Erstarren erfolgt. Hier sind die KantenlĂ€ngen etwas grĂ¶ĂŸer als beim Gießverfahren (zumeist StandardgrĂ¶ĂŸe 690 mm)[16], die Höhe des Blocks betrĂ€gt etwa 20 bis 25 cm. Der große Block wird ebenfalls in mehrere kleine Blöcke von zumeist 156 mm KantenlĂ€nge zerteilt. Dieser Arbeitsschritt wird Brikettieren genannt.[17]

Czochralski-Verfahren

Das Czochralski-Verfahren wird fĂŒr die Herstellung von langen monokristallinen StĂ€ben genutzt. Der sogenannte Impfkristall gibt die Orientierung im Kristall vor. Vor der Herstellung der Zellen wird der entstandene Zylinder noch zurechtgeschnitten.

Zonenschmelzverfahren

Das Zonenschmelzverfahren, auch Float-Zone-Verfahren genannt, dient auch der Herstellung monokristalliner SiliziumstĂ€ben. Die bei diesem Verfahren erzielte Reinheit ist im Normalfall höher als fĂŒr die Solartechnik benötigt und auch mit sehr hohen Kosten verbunden. Deshalb wird diese Technik fĂŒr die Solartechnik eher selten benutzt. Das einzige Unternehmen, das Float-Zone-Wafer in nennenswerten Mengen fĂŒr Solarzellen verwendet, ist das US-Unternehmen SunPower.

Waferherstellung

Die KristallstĂ€be mĂŒssen nun mit einem DrahtsĂ€geverfahren in Scheiben, die sogenannten Wafer, gesĂ€gt werden. Dabei entsteht aus einem großen Teil des Siliziums SĂ€gestaub, der derzeit nicht mehr verwendbar ist. Die Dicke der entstehenden Scheiben liegt bei etwa 0,18 bis 0,28 mm.

Eine weitere Quelle fĂŒr Wafer war frĂŒher der Ausschuss an Rohlingen fĂŒr die Herstellung von integrierten Schaltkreisen der Halbleiterfertigung. Sind die Rohlinge dort zur Weiterverarbeitung ungeeignet, können sie teilweise noch als Solarzelle verwendet werden. Mit den heutigen (2005) Herstellungsverfahren und dem enorm gestiegenen Bedarf der Solarindustrie hat die Verwendung von Ausschuss heute keine Bedeutung mehr.

Die monokristallinen Zellen zeichnen sich durch eine homogene OberflĂ€che aus, wĂ€hrend bei den polykristallinen Zellen gut die einzelnen Zonen mit verschiedener Kristallorientierung unterschieden werden können – sie bilden ein eisblumenartiges Muster auf der OberflĂ€che.

Im Waferstadium sind Vorder- und RĂŒckseite der Zelle noch nicht festgelegt.

Waferprozessierung

Die gesÀgten Wafer durchlaufen nun noch mehrere chemische BÀder, um SÀgeschÀden zu beheben und eine OberflÀche auszubilden, die geeignet ist, Licht einzufangen. Hier gibt es verschiedene, herstellerspezifische Konzepte.

Im Normalfall sind die Wafer schon mit einer Grunddotierung mit Bor versehen. Diese bewirkt, dass es ĂŒberschĂŒssige Defektelektronen (positive Ladungen) gibt, das heißt, es können Elektronen eingefangen werden. Das wird auch p-Dotierung genannt. Auf dem Weg zur fertigen Solarzelle mit p-n-Übergang muss nun die OberflĂ€che noch eine n-Dotierung bekommen, was durch Prozessierung der Zelle in einem Ofen in einer Phosphor-AtmosphĂ€re geschieht. Die Phosphoratome schaffen eine Zone mit ElektronenĂŒberschuss auf der ZelloberflĂ€che, die etwa 1 Â”m tief ist. Nach der Diffusion mit Phosphor entsteht auf der OberflĂ€che des Wafers Phosphorglas. Um dieses zu entfernen, ist ein weiterer sehr kurzer Ätzschritt mit FlusssĂ€ure nötig. Danach wird in einem weiteren Ofen mittels PECVD die Antireflexschicht aufgetragen, die der Zelle erst die typische Farbe gibt.

Danach erfolgt die Bedruckung der Zelle, z. B. durch Siebdruck, mit den notwendigen Lötzonen und der Struktur, welche fĂŒr den besseren Abgriff des generierten elektrischen Stroms sorgt. Die Vorderseite erhĂ€lt meist zwei breitere Streifen, auf denen spĂ€ter die BĂ€ndchen zum Verbinden mehrerer Zellen befestigt werden. Außerdem wird ein sehr dĂŒnnes, elektrisch gut leitendes Raster aufgebracht, was einerseits den Lichteinfall so wenig wie möglich behindern und andererseits den ohmschen Widerstand der Deckelektrode verringern soll. Die RĂŒckseite wird meist vollflĂ€chig mit einem gut leitenden Material beschichtet.

Nach der Prozessierung werden die Zellen nach optischen und elektrischen Merkmalen klassifiziert, sortiert und fĂŒr die Fertigung von Solarmodulen zusammengestellt.

Direkte Herstellung von Platten bzw. Schichten

Um den Umweg des SÀgens von Wafern aus Kristallblöcken zu vermeiden, gibt es umfangreiche AktivitÀten, Solarzellen direkt zu erzeugen.

EFG-Verfahren

Beim EFG-Verfahren (von engl. edge-defined film-fed growth, ungefĂ€hre Übersetzung: „kantendefiniertes Filmwachstum“) werden aus einer elektrisch beheizten Graphitwanne aus flĂŒssigem Reinstsilizium achteckige Röhren von etwa 6 bis 7 m LĂ€nge nach oben gezogen. Die Ziehgeschwindigkeit liegt im Bereich von ca. 1 mm/s. Die KantenlĂ€nge der einzelnen Seiten betrĂ€gt 10 bzw. 12,5 cm, die WandstĂ€rke ca. 280 Â”m. Nach Fertigstellung der Röhre wird diese entlang der Kanten mit NdYAG-Lasern geschnitten und in einem bestimmten Raster dann ĂŒber die Breite der jeweiligen Seite. Daraus ergibt sich die Möglichkeit der Herstellung von Zellen mit unterschiedlichen KantenlĂ€ngen (zum Beispiel 12,5 cm Ă— 15 cm oder 12,5 cm Ă— 12,5 cm). Es wird eine Ausbeute von etwa 80 % des Ausgangsmaterials erzielt. Bei den so erzeugten Zellen handelt es sich ebenfalls um polykristallines Material, welche sich vom Aussehen her deutlich von den gesĂ€gten Zellen unterscheidet. Unter anderem ist die OberflĂ€che der Zellen welliger. Ein Vorteil im Vergleich zum SĂ€gen aus Blöcken ist die weitgehende Vermeidung von Verschnitt, der zudem nicht mit SchneideflĂŒssigkeit (engl. slurry, vgl. Kolloide) verunreinigt ist. Dieses Verfahren wird auch Bandzieh- oder Octagon-Verfahren genannt.

Das EFG-Verfahren wurde bis 2009 von der Firma Schott Solar (Deutschland) angewendet. Von einer weiteren Verwendung musste abgesehen werden, da Schott Solar als einziger Anwender dieses Prozesses die Weiterentwicklung, im Vergleich zu anderen Prozessen mit mehr Entwicklern im Hintergrund, nicht schnell genug vorantreiben konnte.[18] Entwickelt wurde das Verfahren von der Firma ASE Solar (USA).

String-Ribbon-Verfahren

Weiterhin gibt es noch ein Verfahren der US-amerikanischen Firma Evergreen Solar, bei dem die Wafer zwischen zwei FÀden direkt aus der Siliziumschmelze gezogen werden.[19] Dabei entsteht weniger Abfall (wie SpÀne usw., die normalerweise direkt entsorgt werden) als bei den herkömmlichen Verfahren. Als deutsches Unternehmen verwendet die Sovello AG das String-Ribbon-Verfahren zur Produktion von Wafern.

Schichttransfer-Verfahren

Beim Schichttransfer-Verfahren wird eine nur ca. 20 Â”m dĂŒnne Schicht aus einkristallinem Silizium direkt flach auf einem Substrat gezĂŒchtet. Als TrĂ€germaterial eignen sich keramische Substrate oder auch speziell oberflĂ€chenbehandeltes Silizium, wodurch das Ablösen des entstandenen Wafers und die Wiederverwendung des TrĂ€gers gegeben ist. Die Vorteile dieser Verfahren sind der deutlich geringere Siliziumbedarf durch die geringe Dicke und der Wegfall der SĂ€geverluste. Der SĂ€gevorgang als zusĂ€tzlicher Prozessschritt entfĂ€llt. Der erreichbare Wirkungsgrad ist hoch und liegt im Bereich von monokristallinen Zellen.

Solarzellen aus „schmutzigem“ Silizium

Der Prozess des Zonenschmelzens und Dotierens lĂ€sst sich auch in eine bereits gefertigte, flache Platte bzw. Schicht verlagern. Das Prinzip ist, dass die Verunreinigungen durch WĂ€rmebehandlung (mehrfach lateral fortschreitende Umschmelzung, z. B. mit Laserstrahlung) des Siliziums an wenigen Stellen konzentriert werden. [20].

Solarzellen aus speziellen Siliziumstrukturen

Seit den 2000er Jahren arbeiten verschiedene Forschungsgruppen an Solarzellen auf Basis von langen „SiliziumstĂ€bchen“ (manchmal auch „SiliziummikrodrĂ€hte“ genannt) im Mikrometermaßstab.[21][22] Die einzelnen SiliziumstĂ€bchen sind in der Regel einige Mikrometer dick und ca. 200 Mikrometer lang. Strukturen aus senkrecht zu einer TrĂ€gerflĂ€che angeordneten StĂ€bchen zeigen gegenĂŒber konventionellen Solarzellen aus Silizium eine erhöhte Absorption von Sonnenlicht in einem breiten Spektralbereich, vgl. Schwarzes Silizium.

Ein Beispiel fĂŒr eine solche Solarzelle wurde 2010 von einer Arbeitsgruppe um Harry Atwater vom California Institute of Technology vorgestellt. Sie stellten ĂŒber 100 Mikrometer lange StĂ€bchen mithilfe der sogenannten VLS-Technik[23] (von engl. vapor-liquid-solid) her, ĂŒbergossen diese anschließend zur Stabilisierung mit durchsichtigem, biegsamem Kunststoff (Polydimethylsiloxan, PDMS) und lösten danach die fertige Zelle von der Platte.[21]. Diese Zellen zeigen, wie zuvor erwĂ€hnt, eine erhöhte Absorption von insgesamt bis zu 85 % des einfallenden Lichts ĂŒber einen großen Spektralbereich. Die so erzeugten Solarzellen, im Laborstatus, haben einen hohen Wirkungsgrad. Ihre Herstellung verbraucht nur 1 Prozent der sonst zur Solarzellenproduktion ĂŒblichen Siliziummenge, außerdem sind diese Solarzellen biegbar.[24]

Andere Solarzellentypen

DĂŒnnschichtzellen

Kleine, amorphe Si-DĂŒnnschichtsolarzelle auf Glas, vier Zellen in Reihe
RĂŒckseite (Schichtseite, braun lackiert)
Solarzellentypen

DĂŒnnschichtzellen gibt es in verschiedenen AusfĂŒhrungen, je nach Substrat und aufgedampften Materialien. Die Spannbreite der physikalischen Eigenschaften und der Wirkungsgrade ist entsprechend groß. DĂŒnnschichtzellen unterscheiden sich von den traditionellen Solarzellen (kristallinen Solarzellen basierend auf Siliziumwafern) vor allem in ihren Produktionsverfahren und durch die Schichtdicken der eingesetzten Materialien. Die physikalischen Eigenschaften amorphen Siliziums, die von kristallinem Silizium verschieden sind, beeinflussen die Solarzelleneigenschaften. Manche Eigenschaften sind auch noch nicht vollstĂ€ndig verstanden.

Auch bei kristallinen Solarzellen wird das Licht bereits in einer dĂŒnnen OberflĂ€chenschicht (ca. 10 Â”m) absorbiert. Es liegt daher nahe, Solarzellen sehr dĂŒnn zu fertigen. Verglichen mit kristallinen Solarzellen aus Siliziumwafern sind DĂŒnnschichtzellen etwa 100-mal dĂŒnner. Diese DĂŒnnschichtzellen werden meist durch Abscheiden aus der Gasphase direkt auf einem TrĂ€germaterial aufgebracht. Das kann Glas, Metallblech, Kunststoff oder auch ein anderes Material sein. Der aufwĂ€ndige, im vorigen Kapitel beschriebene Prozess des Zerschneidens von Siliziumblöcken kann also umgangen werden.

Das bisher gĂ€ngigste Material fĂŒr DĂŒnnschichtzellen ist amorphes Silizium (a-Si:H). Solche DĂŒnnschichtmodule sind langlebige Produkte. Outdoor-Tests zeigen stabile Wirkungsgrade ĂŒber mehr als zehn Jahre. Mögliche weitere Materialien sind mikrokristallines Silizium (”c-Si:H), Gallium-Arsenid (GaAs), Cadmiumtellurid (CdTe) oder Kupfer-Indium-(Gallium)-Schwefel-Selen-Verbindungen, die so genannten CIGS-Solarzelle bzw. CIS-Zellen, wobei hier je nach Zelltyp S fĂŒr Schwefel oder Selen stehen kann. Ein neues Material, das neu in der DĂŒnnschichttechnologie Anwendung findet, ist CZTS.

FĂŒr die Produktion von Strom ist ein hoher Wirkungsgrad erwĂŒnscht, der auch im DĂŒnnschichtbereich inzwischen teilweise erreicht wird. Wirkungsgrade im Bereich von 20 % (20,3 % mit CIGS-Solarzellen, siehe [8]) fĂŒr kleine CIGS-Laborzellen (≈ 0,5 cmÂČ) sind durchaus möglich. CIGS-DĂŒnnschichtmodule erreichen inzwischen Ă€hnliche Wirkungsgrade wie Module aus polykristallinem Silizium (11–12 %, [25]).

Jedoch ist der Wirkungsgrad nicht das alleinige Kriterium bei der Auswahl. Wichtiger sind oft die Kosten, zu denen Strom aus den Solarzellen produziert werden kann. DafĂŒr sind die verwendeten Herstellungsverfahren sowie die Kosten der eingesetzten Materialien verantwortlich. DarĂŒber hinaus sind die Ausbeute, also das VerhĂ€ltnis von der zur Herstellung aufgewendeten Energie zum Ertrag, sowie die Emission von Schadstoffen bei Produktion und ĂŒber die Betriebszeit wichtige Kriterien. Aktuelle Studien belegen, dass Cadmiumtellurid-DĂŒnnschicht-Solarzellen hier eine bessere Bilanz als konventionelle Siliziumzellen aufweisen.[26]

Eine der StĂ€rken der DĂŒnnschichtmodule besteht darin, dass sie nicht auf ein rigides Substrat wie Glas oder Aluminium angewiesen sind. Bei aufrollbaren Solarzellen fĂŒr den Wanderrucksack oder eingenĂ€ht in Kleider wird ein geringerer Wirkungsgrad in Kauf genommen; der Gewichtsfaktor ist wichtiger als die optimale Lichtumwandlung.

Eine weitere StĂ€rke von DĂŒnnschichtmodulen ist, dass sie einfacher und großflĂ€chiger produziert werden können, insbesondere die DĂŒnnschichtzellen aus amorphem Silizium. Diese machen daher heute den grĂ¶ĂŸten Marktanteil aus.

Zur Herstellung werden zum Teil Maschinen eingesetzt, die auch zur Herstellung von Flachbildschirmen eingesetzt werden. Dabei werden BeschichtungsflĂ€chen von ĂŒber 5 mÂČ erreicht. Mit den Verfahren zur Herstellung von amorphem Silizium lĂ€sst sich auch kristallines Silizium in dĂŒnnen Schichten herstellen, sogenanntes mikrokristallines Silizium. Es vereint Eigenschaften von kristallinem Silizium als Zellenmaterial mit den Methoden der DĂŒnnschichttechnik. In der Kombination aus amorphem und mikrokristallinem Silizium wurden in den letzten Jahren beachtliche Wirkungsgradsteigerungen erzielt.

Ein Verfahren fĂŒr die Fertigung kristalliner DĂŒnnschichtzellen aus Silizium ist CSG, (Crystalline Silicon on Glass); dabei wird eine weniger als zwei Mikrometer dĂŒnne Siliziumschicht direkt auf einen GlastrĂ€ger aufgebracht; die kristalline Struktur wird nach einer WĂ€rmebehandlung erreicht. Das Aufbringen der StromfĂŒhrung erfolgt mittels Laser- und Tintenstrahldrucktechnik. DafĂŒr wurde 2005 von der Firma CSG Solar eine Fabrikationsanlage in Deutschland gebaut. Weil das Verfahren nicht wirtschaftlich zu betreiben war, musste das Unternehmen nach kurzer Zeit seine Produktion einstellen. Der chinesische Solarkonzern Suntech erwarb das Unternehmen und seine Technologie, hat aber 2011 die AktivitĂ€ten in diesem Bereich aufgegeben und das Unternehmen geschlossen.[27]

Es werden derzeit DĂŒnnschichtsolarzellen aus schwarzem Silizium entwickelt, die einen etwa doppelten Wirkungsgrad erreichen sollen.[28]

Schematischer Aufbau einer Konzentratorzelle

Konzentratorzellen

Bei Konzentratorzellen (auch Konzentrator-Photovoltaik, engl: Concentrated PV, CPV) wird HalbleiterflĂ€che eingespart, indem das einfallende Sonnenlicht zunĂ€chst auf einen kleineren Bereich konzentriert wird. Das erreicht man durch Konzentratoren, wie z. B. Linsen, zumeist Fresnel-Linsen, oder auch Lichtleitkörper, die die Totalreflexion nutzen.[29][30] Diese sind im Vergleich zu Halbleitern bezogen auf die FlĂ€che preiswerter. Es kann somit zu geringeren Kosten die Sonneneinstrahlung einer grĂ¶ĂŸeren FlĂ€che ausgenutzt werden. HĂ€ufig verwendete Materialien fĂŒr Konzentratorsolarzellen sind III-V-Halbleiter. Zumeist werden Mehrfachsolarzellen (siehe nĂ€chster Abschnitt) verwendet, die fĂŒr vollflĂ€chige Solarzellen unwirtschaftlich wĂ€ren. Sie arbeiten noch zuverlĂ€ssig bei mehr als dem 500-fachen der SonnenintensitĂ€t. Konzentratorsolarzellen mĂŒssen dem Sonnenstand nachgefĂŒhrt werden damit ihre Optik die Sonnenstrahlung auf die Zellen bĂŒndeln kann. ZusĂ€tzlicher Effekt der Lichtkonzentration ist außerdem eine Erhöhung des Wirkungsgrades, da die Leerlaufspannung ansteigt. Die US-Energiebehörde hat mit dieser Technik Wirkungsgrade von ĂŒber 40 % erreicht.[31]

Mehrfachsolarzellen

→ Hauptartikel: Tandem-Solarzelle

Mehrfachsolarzellen bestehen aus zwei oder mehr Solarzellen mit verschiedenem Material, die monolithisch ĂŒbereinander geschichtet sind. Zweck dieser Anordnung ist es, den Wirkungsgrad der gesamten Anordnung zu erhöhen. Die Wirkungsgrade bei Labormustern von Tandem-Konzentratorsolarzellen erreichten 2008 und 2009 ĂŒber 40 %. So wurde am Fraunhofer Institut fĂŒr Solare Energiesysteme ISE mit einer Mehrfachsolarzelle und 454-facher Konzentration ein Wirkungsgrad von 41,1 % erzielt.[32]

Elektrochemische Farbstoff-Solarzelle

Dieser Zelltyp ist auch bekannt als GrĂ€tzel-Zelle. Bei diesem Zelltyp wird der Strom anders als bei den bisher aufgefĂŒhrten Zellen ĂŒber die Lichtabsorption eines Farbstoffes gewonnen; als Halbleiter kommt Titandioxid zum Einsatz. Als Farbstoffe werden hauptsĂ€chlich Komplexe des seltenen Metalls Ruthenium verwendet, zu Demonstrationszwecken können aber selbst organische Farbstoffe, zum Beispiel der Blattfarbstoff Chlorophyll oder Anthocyane (aus Brombeeren), als Lichtakzeptor verwendet werden (diese besitzen jedoch nur eine geringe Lebensdauer). Die Funktionsweise der Zelle ist noch nicht im Detail geklĂ€rt; die kommerzielle Anwendung gilt als recht sicher, ist aber produktionstechnisch noch nicht in Sicht.

Organische Solarzellen

→ Hauptartikel: Organische Solarzelle
Ein kommerziell erhÀltliches flexibles Modul einer polymeren organischen Solarzelle

Eine organische Solarzelle ist eine Solarzelle, die aus Werkstoffen der organischen Chemie besteht, d. h. aus Kohlenwasserstoff-Verbindungen (Kunststoffen). Diese Verbindungen haben elektrisch halbleitende Eigenschaften. Der Wirkungsgrad, mit dem Sonnenenergie in elektrische Energie umgewandelt wird, liegt mit ca. 10,6 % (Stand April 2011)[33] noch weit unter dem von Solarzellen aus anorganischem Halbleitermaterial. Organische Solarzellen bzw. Plastiksolarzellen, wie sie auch genannt werden, sind aufgrund der Möglichkeiten hinsichtlich gĂŒnstiger und vielseitiger Herstellungsverfahren ein aktuelles Forschungsthema. Die potentiellen Vorteile einer Solarzelle auf Kunststoffbasis gegenĂŒber herkömmlichen Siliziumsolarzellen liegen klar auf der Hand:

  • Geringe Herstellungskosten aufgrund billiger Produktionstechnologien
  • Hohe Stromausbeuten durch DĂŒnnschicht-GroßflĂ€chentechnologien fĂŒr Kunststoffe
  • FlexibilitĂ€t, Transparenz und einfache Handhabung (mechanische Eigenschaften von Kunststoffen)
  • Hohe UmweltvertrĂ€glichkeit (Kunststoffe auf Kohlenstoffbasis)
  • Anpassung an das Sonnenspektrum durch gezielte Polymersynthese
  • „Bunte“ Solarzellen fĂŒr architektonische Stilelemente

Im Vergleich zu den ersten organischen Solarzellen wurden inzwischen viele Fortschritte erzielt.

Das Material fĂŒr diesen Solarzellentyp basiert auf organischen Kohlenwasserstoffverbindungen mit spezifischer elektronischer Struktur, dem konjugierten π-Elektronensystem, welches den betreffenden Materialien die wesentlichen Eigenschaften amorpher Halbleiter verleihen. Typische Vertreter organischer Halbleiter sind konjugierte Polymere und MolekĂŒle, wobei auch speziell synthetisierte Hybridstrukturen verwendet werden. Die ersten Kunststoffsolarzellen, die aus konjugierten Polymeren (Elektronendonatoren) und Fullerenen (Elektronenakzeptoren) hergestellt wurden, waren 2-Schicht-Solarzellen. Diese Zellen bestehen aus einer dĂŒnnen Schicht des konjugierten Polymers, auf die eine weitere dĂŒnne Schicht von Fullerenen aufgebracht wird. Aus technologischer Sicht stellen konjugierte Polymere und funktionalisierte MolekĂŒle auf Grund ihrer Prozessierbarkeit aus der FlĂŒssigphase attraktive Basismaterialien fĂŒr die kostengĂŒnstige Massenproduktion flexibler PV-Elemente mit vergleichsweise einfacher Struktur dar. Molekulare Halbleiter hingegen werden ĂŒblicherweise in vakuumgestĂŒtzten Aufdampfprozessen zu wohldefinierten Mehrschichtsystemen verarbeitet und lassen die Herstellung sequentiell abgeschiedener Halbleiterschichten und somit komplexere Zelltypen (z. B. Tandemzellen) zu.

Die organische Photovoltaik (OPV) hat das technologische Potenzial, um als sogenannte „Low-cost Energy Source“ Einzug in die mobile Stromversorgung zu halten. Dies auch aufgrund der kostengĂŒnstigen Massenfertigung auf Basis etablierter Druckverfahren. Damit könnte mit der organischen Photovoltaik ein neuer Anwendungsbereich erschlossen werden bei gleichzeitig niedrigen Investitionskosten. Die Firma Konarka Technologies GmbH in NĂŒrnberg hat 2009 erste organische Kollektoren fĂŒr MobilgerĂ€te auf den Markt gebracht.[34]

Hybrid-Solarzelle

Eine Hybridsolarzelle ist eine Solarzelle, die organische und anorganische Bestandteile enthÀlt.[35]

Fluoreszenz-Zelle

Fluoreszenz-Zellen sind Solarzellen, die zunĂ€chst in einer Platte durch Fluoreszenz Licht grĂ¶ĂŸerer WellenlĂ€nge erzeugen, um dieses an den Plattenkanten zu wandeln.

Thermische Photovoltaik-Zellen (TPV)

Unter dem Namen Thermische Photovoltaik-Zellen (TPV) werden Zellen auf Basis von InP (frĂŒher GaSb) verstanden, die nicht Sonnenlicht verwerten, sondern WĂ€rmestrahlung, also Licht wesentlich höherer WellenlĂ€nge. Der Wirkungsgrad wurde dabei durch neuere Arbeiten[36] bis auf 12 % gesteigert (vorher maximal 9 %). Eine potentielle Anwendung solcher Zellen wĂ€re die Verwertung von WĂ€rme, wie sie bei großtechnischen Anwendungen in großen Mengen entsteht und die bisher mit zusĂ€tzlichem Aufwand entsorgt werden muss.

Geschichte

→ Hauptartikel: Geschichte der Photovoltaik

Die Nutzung der Sonne zur Gewinnung von elektrischer Energie kann man grob in das Jahr 1839 datieren. Der Franzose Alexandre Edmond Becquerel stellte fest, dass eine Batterie, wenn man sie dem Sonnenlicht aussetzt, eine höhere Leistung hat als ohne Sonnenlicht. Er nutzte den Potentialunterschied zwischen einer verdunkelten und einer belichteten Seite einer chemischen Lösung, in die er zwei Platinelektroden eintauchte. Als er nun diese Konstruktion in die Sonne stellte, beobachtete er, dass ein Strom zwischen den zwei Elektroden entstand. So entdeckte er den photovoltaischen Effekt, konnte ihn allerdings noch nicht erklÀren. SpÀter wies man nach, dass auch andere Materialien wie Kupfer photoleitfÀhig sind.

Die PhotoleitfĂ€higkeit wurde bei Selen 1873 nachgewiesen. Zehn Jahre spĂ€ter wurde die erste „klassische“ Photozelle aus Selen gefertigt. Wiederum zehn Jahre spĂ€ter, 1893, wurde die erste Solarzelle zur Erzeugung von ElektrizitĂ€t gebaut.

1904 entdeckte der deutsche Physiker Philipp Lenard, dass Lichtstrahlen beim Auftreffen auf bestimmte Metalle Elektronen aus deren OberflĂ€che herauslösen und lieferte damit die ersten ErklĂ€rungen fĂŒr den Effekt der Photovoltaik. Ein Jahr spĂ€ter erhielt er den Nobelpreis fĂŒr Physik fĂŒr die Erforschung des Durchganges von Kathodenstrahlen durch Materie und fĂŒr seine Elektronentheorie. Den endgĂŒltigen Durchbruch schaffte 1905 Albert Einstein, als er mit Hilfe der Quantentheorie die gleichzeitige Existenz des Lichtes sowohl als Welle als auch als Teilchen erklĂ€ren konnte. Bis dahin glaubte man, dass Licht nur als eine Energie mit unterschiedlicher WellenlĂ€nge auftritt. Doch Einstein stellte in seinen Versuchen, die Photovoltaik zu erklĂ€ren, fest, dass sich Licht in manchen Situationen genauso wie ein Teilchen verhĂ€lt, und dass die Energie jedes Lichtteilchens oder Photons nur von der WellenlĂ€nge des Lichts abhĂ€ngt. Er beschrieb das Licht als eine Ansammlung von Geschossen, die auf das Metall treffen. Wenn diese Geschosse genĂŒgend Energie besitzen, wird ein freies Elektron, das sich im Metall befindet und von einem Photon getroffen wird, vom Metall gelöst. Außerdem entdeckte er, dass die maximale kinetische Energie der losgelösten Elektronen von der IntensitĂ€t des Lichtes unabhĂ€ngig ist und nur durch die Energie des auftreffenden Photons bestimmt wird. Diese Energie hĂ€ngt wiederum nur von der WellenlĂ€nge (oder der Frequenz) des Lichtes ab. FĂŒr seine Arbeit zum photoelektrischen Effekt erhielt er 1921 den Nobelpreis fĂŒr Physik.

Die Entdeckung des p-n-Übergangs (Kristallgleichrichters) im Jahre 1947 durch William B. Shockley, Walther H. Brattain und John Bardeen war ein weiterer großer Schritt zur Solarzelle in ihrer heutigen Form. Nach diesen Entdeckungen stand dem Bau einer Solarzelle in ihrer heutigen Form nichts mehr entgegen. Es ist jedoch einem glĂŒcklichen Zufall zu verdanken, dass diese erste Solarzelle 1954 in den Laboratorien der amerikanischen Firma Bell gebaut wurde. Die Mitarbeiter der Firma (unter Teamleiter Morton Price) beobachteten, als sie einen Gleichrichter, der mit Hilfe von Silizium arbeitete, untersuchten, dass dieser mehr Strom lieferte, wenn er in der Sonne stand, als wenn er zugedeckt war. Bei Bell erkannte man schnell den Nutzen dieser Entdeckung zur Versorgung des Telefonnetzes von lĂ€ndlichen Regionen mit Strom, was bis dahin noch mit Batterien geschah. Die Firma Bell, genauer die Herren Chapin, Fuller und Pearson, entwickelte 1953 so die ersten Solarzellen aus Silizium, welche mit Arsen dotiert waren und einen Wirkungsgrad von etwa 4 % besaßen. Durch Wahl einer anderen Dotierung konnte der Wirkungsgrad auf etwa 6 % erhöht werden.

Modell von Vanguard 1

Die Raumfahrt erkannte sehr schnell den Nutzen der Solartechnik und rĂŒstete 1958 zum ersten Mal einen Satelliten mit Solarzellen aus. Vanguard 1 startete am 17. MĂ€rz 1958 und war erst der vierte Satellit ĂŒberhaupt. Er besaß ein Solarpanel, welches mit 108 Silizium-Solarzellen ausgestattet war. Diese dienten nur als Ladestation der Akkus und nicht zur direkten Stromversorgung. Dabei wurde errechnet, dass die Zellen einen Wirkungsgrad von 10,5 % besaßen. Die Konstrukteure hatten eine geringere Energieausbeute und eine kĂŒrzere Lebensdauer angenommen, so dass man diesen Satelliten nicht mit einem „Ausschalter“ versehen hatte. Erst nach acht Jahren stellte der Satellit aufgrund von StrahlenschĂ€den seinen Betrieb ein.

Kurz darauf entstand die CdS-Cu2S-Solarzelle, die bis Anfang der 1990er noch in Satelliten eingesetzt wurden. Heutige Satelliten sind zum Vergleich mit Vanguard I mit rund 40.000 Solarzellen ausgestattet.

Im Weltraum steht der natĂŒrlichen Sonnenstrahlung im Vergleich zur ErdoberflĂ€che nichts entgegen, keine Wolkendecken und keine Strahlung absorbierende und mehr oder weniger verschmutzte AtmosphĂ€re, die das Sonnenlicht behindert. Andererseits fĂŒhren die extremen StrahlungsverhĂ€ltnisse im Weltraum zu einer stĂ€rkeren Degradation der Solarzellen als es auf der Erde der Fall ist. Seither versuchen Industrie und Forschung, immer grĂ¶ĂŸere Wirkungsgrade zu erreichen und zugleich die Degradation und Strahlungsresistenz zu verbessern.

Grafik: Juno vor dem Jupiter

Üblicherweise werden Raumflugkörper durch Solarzellen mit Strom versorgt. Dadurch dass heutige fĂŒr Raumfahrtzwecke verwendete Solarzellen nicht nur 50 % effizienter, sondern auch strahlungsresistenter als die noch vor 20 Jahren verwendeten Siliziumzellen sind,[37] kann im Jahr 2011 die Raumsonde Juno als erste mit Solarzellen ausgerĂŒstete Raumsonde zum in Strahlung getauchten Planeten Jupiter starten.

Durch die Verwendung reineren Siliziums und besserer Dotierungsmöglichkeiten wurde der Wirkungsgrad gesteigert und die Lebensdauer erhöht. Mandelkorn und Lamneck verbesserten die Lebensdauer der Zellen 1972 durch eine Reflexion der MinoritĂ€tsladungstrĂ€ger, in dem sie ein sogenanntes back surfaces field (BSF) in die p-leitende Schicht einbrachten. 1973 stellten Lindmayer und Ellison die sog. violette Zelle vor, die bereits einen Wirkungsgrad von 14 % besaß. Durch das Reduzieren des Reflexionsvermögens wurde 1975 der Wirkungsgrad auf 16 % gesteigert. Diese Zellen heißen CNR-Solarzellen (englisch: Comsat Non Reflection; Comsat = Telefonsatellit ) und wurden fĂŒr Satelliten entwickelt. Inzwischen sind von Green sowie an der Stanford UniversitĂ€t und bei Telefunken Solarzellen mit Wirkungsgraden um 20 % entwickelt worden. Der theoretische Wirkungsgrad fĂŒr Silizium-Solarzellen liegt bei 29 % fĂŒr die StrahlungsverhĂ€ltnisse in mittleren Breiten. Zu den Wirkungsgraden siehe auch technische Merkmale.

Maßgeblicher Anstoß fĂŒr diese Entwicklung war Anfang der Siebziger die Vervierfachung des Ölpreises. Nach dieser Preissteigerung rief Richard Nixon 1974 ein Forschungsprogramm ins Leben, welches sich mit regenerativen Energien auseinandersetzte. Bis dahin kostete jedes Watt 200 Dollar und war somit nicht konkurrenzfĂ€hig. Um die Akzeptanz und das Vertrauen bei der Bevölkerung zu gewinnen, wurden Anfang der 1980er Rennen mit Solarmobilen ausgetragen, und im Juli 1981 ĂŒberquerte ein mit Solarkraft angetriebenes Flugzeug den Ärmelkanal.

Bis gegen Ende der 1990er Jahre waren Zellen mit etwa 100 mm KantenlĂ€nge (im Fachjargon auch Vier-Zoll-Zellen genannt) die ĂŒblichste BaugrĂ¶ĂŸe. Danach wurden auch 125-mm-Zellen verstĂ€rkt eingefĂŒhrt, und seit etwa 2002 sind auch 156-mm-Zellen (KantenlĂ€nge 156 mm bzw. 6 Zoll) fĂŒr Standardmodule eine gĂ€ngige GrĂ¶ĂŸe.[38]

Formen und GrĂ¶ĂŸen

Zu Beginn der Kommerzialisierung der Solartechnik wurden hĂ€ufig runde Zellen eingesetzt, deren Ursprung von den meist runden SiliziumstĂ€ben der Computerindustrie herrĂŒhrt. Inzwischen ist diese Zellenform relativ selten, und es werden quadratische Zellen oder fast quadratische mit mehr oder weniger abgeschrĂ€gten Ecken eingesetzt. Als Standardformate werden derzeit Wafer mit einer KantenlĂ€nge von 125 und 156 mm prozessiert; kĂŒnftig sollen aber auch Zellen mit einer KantenlĂ€nge von 210 mm Bedeutung erlangen.

Durch SĂ€gen der fertig prozessierten Zellen entstehen fĂŒr spezielle Anwendungen im KleingerĂ€tebereich auch Zellen mit kleineren KantenlĂ€ngen. Sie liefern annĂ€hernd die gleiche Spannung wie die großen Zellen, jedoch entsprechend der kleineren FlĂ€che einen kleineren Strom.

Im EFG-Verfahren werden auch Zellen hergestellt, bei denen die Seiten des entstehenden Rechtecks nicht die gleichen LĂ€ngen haben.

Degradation

Unter dem Begriff Degradation wird die alterungsbedingte Änderung der Parameter von Halbleiterbauteilen verstanden - in diesem Fall der RĂŒckgang des Wirkungsgrades von Solarzellen im Laufe ihres Lebens.

Üblicherweise betrachtet man einen Zeitraum von bis zu 25 Jahren. Der Verlust an Wirkungsgrad liegt etwa im Bereich von 10 % bzw. 13 % in dem Zeitraum von 20 bzw. 25 Jahren[39]. Solarzellen im Weltraum altern wesentlich schneller, da sie einer höheren Strahlung ausgesetzt sind.

Nachlassende Wirkungsgrade bzw. StromertrĂ€ge bei Solarmodulen haben aber oft banalere Ursachen: allgemeine flĂ€chige Verschmutzung der ModulglĂ€ser; Veralgung („Verpilzen“) speziell vom Modulrahmen ausgehend, mit Teilabschattung der Zellen; wachsende BĂ€ume und StrĂ€ucher, die eine Teilabschattung bewirken und bei der Installation noch deutlich kleiner waren; Vergilbung des polymeren Einbettungsmaterials, welches den Kontakt Zelle – Glas bewerkstelligt.

Kristalline Solarzellen

Bildung des Bor-Sauerstoff-Komplex in kristallinen Solarzellen

Bei kristallinen Solarzellen betrĂ€gt der anfĂ€ngliche Wirkungsgrad ca. 15–19 %. Oft garantieren die Hersteller von Solarmodulen, die auf diesen Zellen basieren, 80 bis 85 % der Nennleistung nach 20 Jahren. Es ergeben sich also selbst nach langer Laufzeit (Betrieb) nur geringe Verluste, welche die/den Installation/Langzeiteinsatz einer Photovoltaikanlage rechtfertigen.

FĂŒr die Degradation verantwortlich sind im Wesentlichen rekombinationsaktive Defekte, die die LadungstrĂ€gerlebensdauer auf ca. 10 % ihres Anfangswertes senkt (lichtinduzierte Degradation). Verantwortlich fĂŒr die lichtinduzierte Degradation ist die Bildung von Bor-Sauerstoff-Komplexen in Czochralski-Silizium: Durch die Photoreaktion, bei der das Bor sein positiv geladenes Loch verliert und sich zu einem negativ geladenen Ion wandelt, wird der Sauerstoff angezogen. Der Sauerstoff lagert sich dadurch in die Verbindung zwischen dem Bor und dem Silizium ein.

Um den Effekt des Wirkungsverlustes zu minimieren, kann man Siliziumwafer mit einem niedrigerem Anteil an Bor und möglichst geringem Sauerstoffanteil verwenden (< 15 ppm). Bei der Verwendung von weniger Bor wird der Wafer jedoch aufgrund der geringeren Dotierung auch hochohmiger, wodurch der Wirkungsgrad der Zelle sinkt.

Untersuchungen haben gezeigt, dass Solarzellen bei Dotierung des p-Kristalls mit Gallium statt Bor keine wesentliche Degradation aufweisen.[40] Der geringere Wirkleistungsverlust konnte auch bei Gallium-dotiertem Silizium mit hohem Sauerstoffanteil nachgewiesen werden.[41]

Amorphe Siliziumsolarzellen

Eine besonders hohe Degradation von bis zu 25 % kann bei Solarzellen aus amorphem Silizium im ersten Betriebsjahr auftreten. FĂŒr Solarmodule aus diesem Material wird jedoch nicht die Leistung zu Beginn der Lebenszeit, sondern die Leistung nach dem Alterungsprozess in den DatenblĂ€ttern und beim Verkauf angegeben. Solarmodule aus diesem Material haben also zunĂ€chst eine höhere Leistung als die, fĂŒr die man bezahlt hat. Die Degradation, auch Staebler-Wronski-Effekt (SWE) genannt, erfolgt unter Lichteinstrahlung. Dabei erfĂ€hrt das metastabile amorphe hydrogenierte Silizium (a-Si:H) eine Zunahme der Defektdichte um etwa eine GrĂ¶ĂŸenordnung, bei gleichzeitiger Abnahme der LeitfĂ€higkeit und Verschiebung des Fermi-Niveaus in die Mitte der BandlĂŒcke. Nach etwa 1000 Sonnenstunden erreichen a-Si-Zellen einen stabilen SĂ€ttigungswert fĂŒr den Wirkungsgrad.

Wirkungsgrad

Der Wirkungsgrad η einer Solarzelle ist das VerhÀltnis der von ihr erzeugten elektrischen Leistung Pelektrisch und der Leistung der einfallenden Strahlung PLicht.

\eta = \frac{P_{\rm elektrisch}}{P_{\rm Licht}}

Ein hoher Wirkungsgrad ist erstrebenswert, weil er bei gleichen LichtverhĂ€ltnissen und gleicher FlĂ€che zu einer grĂ¶ĂŸeren Ausbeute an elektrischem Strom fĂŒhrt. Der Wirkungsgrad wird dabei im wesentlichen durch die Shockley-Queisser-Grenze limitiert. Oft wird der Wirkungsgrad von Solarzellen nach dem Carnotschen Wirkungsgrad berechnet. Dies ist insofern nicht korrekt, weil dieser fĂŒr Kraft-WĂ€rme-Maschinen gilt (vgl. Carnotscher Kreisprozess) und nicht fĂŒr quantenmechanische Prozesse.

Technische Merkmale

Die KenngrĂ¶ĂŸen einer Solarzelle werden fĂŒr normierte Bedingungen, die Standard-Testbedingungen, hĂ€ufig abgekĂŒrzt STC (engl. Standard Test Conditions) angegeben:

  • EinstrahlungsstĂ€rke von 1000 W/m2 in Modulebene,
  • Temperatur der Solarzelle 25 Â°C konstant,
  • Strahlungsspektrum AM 1,5 global; DIN EN 61215, IEC 1215, DIN EN 60904, IEC 904).

Dabei steht AM 1,5 global fĂŒr den Begriff Air Mass, die 1,5 dafĂŒr, dass die Sonnenstrahlen das 1,5-fache der AtmosphĂ€renhöhe durchlaufen, weil sie schrĂ€g auftreffen. Das entspricht sehr gut den sommerlichen Gegebenheiten in Mitteleuropa von Norditalien bis Mittelschweden. Im Winter steht die Sonne in unseren Breiten erheblich tiefer, und ein Wert von AM 4 bis AM 6 ist hier realistischer.

Durch die Absorption in der AtmosphĂ€re verschiebt sich auch das Spektrum des auf das Modul treffenden Lichtes. „Global“ steht fĂŒr Globalstrahlung, die sich aus dem Diffus- und dem Direktstrahlungsanteil der Sonne zusammensetzt.

Dabei ist zu beachten, dass in der RealitĂ€t insbesondere die Zellentemperatur bei einer solchen Einstrahlung, die in Deutschland im Sommer zur Mittagszeit erreicht wird, bei normalem Betrieb wesentlich höher liegt (je nach Anbringung, Windanströmung etc. kann sie zwischen etwa 30 und 60 Â°C liegen). Eine erhöhte Zellentemperatur bedeutet aber gleichzeitig einen herabgesetzten Wirkungsgrad der Solarzelle. Aus diesem Grund wurde auch eine weitere BezugsgrĂ¶ĂŸe geschaffen, PNOCT, die Leistung bei normaler Betriebstemperatur (normal operating cell temperature).

Strom-Spannungs-Kennlinie einer Solarzelle, beleuchtet und unbeleuchtet

GebrĂ€uchliche AbkĂŒrzungen fĂŒr die Bezeichnungen sind

  • SC: Short Circuit - Kurzschluss
  • OC: Open Circuit - Leerlauf
  • MPP: Maximum Power Point – Betriebspunkt maximaler Leistung
  • PR: Performance Ratio; QualitĂ€tsfaktor der angibt, welcher Teil des vom Solargenerator erzeugten Stromertrages (unter Nennbedingungen) real zur VerfĂŒgung steht.

Die Kennwerte einer Solarzelle sind

  • Leerlaufspannung UOC (auch VOC)
  • Kurzschlussstrom ISC
  • Spannung im bestmöglichen Betriebspunkt UMPP (auch VMPP)
  • Strom im Betriebspunkt mit maximaler Leistung IMPP
  • Maximale erzielbare Leistung PMPP Solarzellenhersteller geben diese unter standardisierten Bedingungen maximal erzielbare Leistung in der Einheit kWp, sprich „Kilowatt-Peak“ an
  • FĂŒllfaktor FF = \frac{\rm P_{MPP}}{U_{\rm OC}\cdot I_{\rm SC}}
  • Koeffizient fĂŒr die LeistungsĂ€nderung mit der Zelltemperatur
  • Zellwirkungsgrad \eta = \frac{P_{\rm MPP}}{A\cdot P_{\rm opt}} mit der bestrahlten FlĂ€che A und der BestrahlungsstĂ€rke Popt

Solarzellen können also eine Leistung von sehr grob 160 W/mÂČ abgeben. Eingebaut in ein Modul ist die Leistung pro FlĂ€che geringer, da zwischen den Zellen und zum Modulrand AbstĂ€nde vorhanden sind.

Der Wirkungsgrad einer Solarzelle ist das VerhĂ€ltnis von erzeugter elektrischer Leistung zur Leistung der Globalstrahlung. Halbleiter mit fester BandlĂŒcke nutzen nur einen Teil des Sonnenlichtes. Ihr maximaler theoretischer Wirkungsgrad liegt bei ca. 30 %. Der maximale theoretische Wirkungsgrad bei Multibandsystemen, die fĂŒr alle WellenlĂ€ngen Farben des Sonnenlichts sensibilisiert sind, liegt bei ca. 85 %.

Materialsystem Wirkungsgrad (AM 1,5) Lebensdauer Modul-Kosten (Okt. 2011)[42][43][44]
Silizium (amorph) 5 – 10 % < 20 Jahre < 0,95 EUR/W
Silizium (polykristallin) 10 – 16 % 25 – 30 Jahre < 1 EUR/W
Silizium (monokristallin) 15 – 20 % 25 – 30 Jahre < 1 EUR/W
Galliumarsenid (Einschicht) 15 – 20 %
Galliumarsenid (Zweischicht) 20 %
Galliumarsenid (Dreischicht) 25 % (30 % bei AM0) > 20 Jahre 500 – 1500 EUR/W
Galliumindiumphosphid + Galliumindiumarsenid 40,8 %[45] (non-STC)
Galliumindiumnitrid
Cadmiumtellurid 5 – 12 % > 20 Jahre < 0,95 EUR/W

Der maximale Wirkungsgrad kommerzieller, monokristalliner Zellen liegt bei ca. 20 Prozent (siehe Tabelle). Mit diesen Zellen hergestellte Solarmodule erreichen einen Modulwirkungsgrad von etwa 17 Prozent. Der Rekord fĂŒr im Labor hergestellte Silizium-Solarzellen liegt bei 24,7 Prozent (University of New South Wales, Australien), mit denen Module mit ĂŒber 22 Prozent Wirkungsgrad hergestellt wurden. Der Preis fĂŒr diese im Zonenschmelzverfahren hergestellten Zellen liegt bei etwa 200 Euro pro Zelle bei einer ZellflĂ€che von 21,6 cm2. FĂŒr GaAs-Systeme betrĂ€gt er das fĂŒnf- bis zehnfache.

Die Degradation des Wirkungsgrades (Alterungsverhalten) liegt bei ca. 10 Prozent in 25 Jahren. Hersteller geben beispielsweise Garantien auf mindestens 80 Prozent der Peak-Leistung nach 20 Jahren.

Im Weltraum ist einerseits die Solarkonstante grĂ¶ĂŸer als die Globalstrahlung auf der Erde, andererseits altern die Solarzellen schneller. Solarpanele fĂŒr Satelliten erreichen zur Zeit (2005) einen Wirkungsgrad von fast 25 % [46] bei einer Betriebszeit von 15 Jahren.

Schaltbilder

Schaltsymbol einer Fotodiode
Schaltzeichen und einfaches Ersatzschaltbild einer Solarzelle

Das Schaltsymbol einer Solarzelle gibt, wie das Schaltsymbol einer Diode oder Photodiode, mit einem Pfeil die technische Stromrichtung zur Verschaltung an. Der Kennlinienverlauf einer realen Solarzelle weicht allerdings von der einer idealen Photodiode ab. Um diese Abweichungen zu modellieren, existieren mehrere Ersatzschaltbilder.

Vereinfachtes Ersatzschaltbild

Das Schaltbild besteht zunÀchst nur aus einer Stromquelle, die parallel zu einer idealen Diode geschaltet wird. Diese produziert einen Strom, der von der BestrahlungsstÀrke abhÀngt und den Photostrom Iph modelliert. Die GesamtstromstÀrke ergibt sich damit mit dem Diodenstrom ID (siehe Diode) zu

 I = I_\mathrm{ph} - I_\mathrm{D} = I_\mathrm{ph} - I_\mathrm{S} \left[ \mathrm{e}^{ \frac{U_\mathrm{D}}{n\cdot U_\mathrm{T}}} - 1 \right] .

Erweitertes Ersatzschaltbild (Ein- und Zweidiodenmodell)

Eindiodenmodell einer Solarzelle

Das erweiterte Ersatzschaltbild nimmt RĂŒcksicht auf reale Faktoren des Bauelementes, die durch die Fertigung entstehen. Mit diesen Modellen soll ein möglichst realistisches Modell der tatsĂ€chlichen Solarzelle geschaffen werden. Beim Eindiodenmodell wird so das vereinfachte Ersatzschaltbild zunĂ€chst nur durch einen parallel und einen in Reihe geschalteten Widerstand ergĂ€nzt.

  • Der Parallelwiderstand Rp symbolisiert Kristallfehler, nichtideale Dotierungsverteilungen und andere Materialdefekte, durch die Verlustströme entstehen, die den p-n-Übergang ĂŒberbrĂŒcken. Bei Solarzellen aus guter Herstellung ist dieser Widerstand relativ groß.
  • Mit dem Serienwiderstand Rs werden alle Effekte zusammengefasst, durch die ein höherer Gesamtwiderstand des Bauelementes entsteht. Das sind hauptsĂ€chlich der Widerstand des Halbleitermaterials, der Widerstand an den Kontakten und der Zuleitungen. Diese GrĂ¶ĂŸe sollte bei gefertigten Solarzellen möglichst gering sein.

Die Formel fĂŒr den Gesamtstrom ist fĂŒr dieses Modell bereits eine rekursive Funktion und lautet:

I=I_\mathrm{ph}-I_\mathrm{d}-\frac{U_\mathrm{p}}{R_\mathrm{p}}=I_\mathrm{ph}-I_\mathrm{S}\left[ \mathrm{e}^{\frac{U+R_\mathrm{s}\cdot I}{n\cdot U_\mathrm{T}}}-1 \right] - \frac{U+R_\mathrm{s}\cdot I}{R_\mathrm{p}}
Zweidiodenmodell mit spannungsgesteuerter Stromquelle fĂŒr den Lawinendurchbruch in Sperr-Richtung

Beim Übergang zum Zweidiodenmodell fĂŒgt man eine weitere Diode mit einem anderen IdealitĂ€tsfaktor n ein. Normalerweise werden diese ĂŒber die Werte 1 und 2 angesetzt. Weiterhin lassen sich alle diese Modelle bei Betrieb in Sperr-Richtung durch eine spannungsgesteuerte Stromquelle ergĂ€nzen, um den Lawinendurchbruch zu modellieren. Die Formeln fĂŒr die Ströme beim Zweidiodenmodell lauten dann, bei Anpassungsleitwert gb, Durchbruchspannung Ub und Lawinendurchbruchexponent nb:

I=I_\mathrm{ph}-I_\mathrm{b}-I_\mathrm{S1}\left[ \mathrm{e}^{\frac{U+R_\mathrm{s}\cdot I}{n_1\cdot U_\mathrm{T}}}-1 \right] -I_\mathrm{S2}\left[ \mathrm{e}^{\frac{U+R_\mathrm{s}\cdot I}{n_2\cdot U_\mathrm{T}}}-1 \right] -\frac{U+R_\mathrm{s}\cdot I}{R_\mathrm{p}}
I_\mathrm{b}=g_\mathrm{b}\cdot\frac{(U+R_\mathrm{s}\cdot I)}{R_\mathrm{p}}\cdot\left(1-\frac{U+R_\mathrm{s}\cdot I}{U_\mathrm{b}}\right)^{-n_\mathrm{b}}

Energetische Amortisation und Erntefaktoren

Die energetische Amortisationszeit ist der Zeitpunkt, zu dem die fĂŒr die Herstellung einer Photovoltaikanlage aufgewandte PrimĂ€renergie durch selbige wieder erzeugt wurde. Da die bei der Produktion genutzte elektrische Energie zu den SekundĂ€renergien zĂ€hlt, wird diese mit dem Wirkungsgrad eines fossilen Kraftwerkes in PrimĂ€renergie umgerechnet. Dementsprechend erfolgt diese Umrechnung auch bei der erzeugten elektrischen Energie der Solarzelle. Analog kann man sich vorstellen, dass die Photovoltaikanlage den Strom aus einem konventionellen Kraftwerk ersetzt.[47]

Am besten schneiden DĂŒnnschichtmodule ab, die sich nach maximal 1,5 Jahren (Richtwert) amortisieren. Anlagen mit mono- oder multikristallinen Zellen benötigen zur energetischen Amortisation etwa 1,7 Jahre[48] Diese Werte hĂ€ngen natĂŒrlich von der tatsĂ€chlichen Energieausbeute (d. h. von der Sonneneinstrahlung) und den verwendeten Vergleichskraftwerken ab. Auch ist zu beachten, ob Solarzellen, Module oder ganze Systeme (inklusive Wechselrichter und Anschlussinfrastruktur) betrachtet werden. Ältere Untersuchungen zeigen bei Si-Solarzellen teilweise höhere Werte, was mit der Nutzung von Restsilizium aus der Chipindustrie zusammenhĂ€ngt. Mit dem Beginn der großtechnischen Solarzellenherstellung konnten hier energieintensive Prozessschritte entfallen. Da der Energieverbrauch einen großen Kostenfaktor bei der Herstellung einer Solarzelle darstellt, wird mit einer weiteren deutlichen Reduzierung der Amortisierungszeiten auch bei Si-Solarzellen gerechnet.[49]

Heutige Solarzellen haben (angewandt z. B. in Deutschland) einen Erntefaktor, der grĂ¶ĂŸer als 1 ist, d. h. sie erzeugen ein Vielfaches der Energie, die fĂŒr die Herstellung notwendig war.

Umweltschutz

Die Herstellung photovoltaischer Solarzellen ist ein chemischer Prozess, bei dem gasförmige, flĂŒssige und feste Chemikalien zum Einsatz kommen, die gesundheits- und umweltschĂ€dlich sind. Aus diesem Grund ist ein hoher Standard der Prozesssicherheit zentral. Unter Arbeitsschutzaspekten ist eine sichere Ablufterfassung und Reinigung zu gewĂ€hrleisten. Bei dem Einsatz von NasswĂ€schern wird die Abluft durch ein flĂŒssiges Absorptionsmedium geleitet. Wenn dieses aufgebraucht ist, entsteht eine weitere Abwasserquelle, neben den Ätzlösungen aus der Produktion. Diese mĂŒssen innerbetrieblich wiederaufbereitet oder spezialisierten Entsorgern ĂŒbergeben werden. Bei der Herstellung von DĂŒnnschichthalbleitern kommt es an den WĂ€nden und Aufbauten der Prozesskammer zu siliziumhaltigen Ablagerungen. Die RĂŒckstĂ€nde mĂŒssen regelmĂ€ĂŸig entfernt werden, da sie den Prozess stören und zu QualitĂ€tseinbußen fĂŒhren. Zum Entfernen der RĂŒckstĂ€nde verwendet man Schwefelhexafluorid und Stickstofftrifluorid als Reinigungsgase. Beide Gase sind zwar ungiftig, gleichwohl aber sehr starke Treibhausgase[50]. In der Zellproduktion mĂŒssen die Reinigungsgase mit hoher Volumenflußrate eingesetzt werden, da sie chemisch sehr stabil sind und im Plasma zu weniger als 10% in reinigungsaktive Radikale zerfallen. Ein Großteil des Gases bleibt somit ungenutzt und muss kostenintensiv entsorgt werden. Zum Teil entweicht es - gewollt oder ungewollt - direkt in die Umwelt. Hieraus erklĂ€rt sich u.a. auch der kĂŒrzlich gemessene starke Anstieg der Stickstofftrifluoridkonzentration in der HochatmosphĂ€re, besonders ĂŒber Ost- und SĂŒdostasien. An Stelle von Schwefelhexafluorid und Stickstofftrifluorid kann auch das sehr reaktive Halogen Fluor als Reinigungsgas verwendet werden. Fluor ist sehr giftig, es ist jedoch kein Treibhausgas. Außerdem lĂ€sst es sich sehr leicht und rĂŒckstandfrei aus Abgasströmen entfernen.

Einige Solarzelltypen verwenden anstelle von Silizium Stoffe wie z. B. toxisches oder karzinogenes Cadmium, Arsen bzw. deren Verbindungen sowie Kupfer-Indium-Gallium-Diselenid. Ein typisches Cadmiumtellurid-Solarmodul enthĂ€lt zum Beispiel ca. 22 g des gefĂ€hrlichen Schwermetalls Cadmium und 25 g Tellur pro m2 ZellflĂ€che.[51] Bei der Produktion werden beide Substanzen durch Co-Verdampfung auf das TrĂ€germaterial aufgebracht. Die Co-Verdampfung ist ein ungerichteter Prozess, bei dem die gesamte InnenoberflĂ€che der Beschichtungskammer mit DĂŒnnschichten aus Tellur, Cadmiumtellurid, Cadmiumsulfid und Antimontellurid ĂŒberzogen werden. Der Materialverbrauch erhöht sich dadurch um mindestens weitere 40 %.

Bei der regelmĂ€ĂŸigen Reinigung der Produktionskammer mit wĂ€ssriger SĂ€ure – die Reinigung erfolgt manuell – werden die RĂŒckstĂ€nde in eine wĂ€ssrige Lösung ĂŒberfĂŒhrt. Neben der eigentlichen Zellproduktion stellt also auch die Reinigung der Produktionsanlagen eine Herausforderung an Umweltschutz und Arbeitsschutz dar.[52][53][54][55][56] Eine neuere Untersuchung versucht, die geringere GefĂ€hrdung, die von Cadmiumtellurid-Zellen im Vergleich zur Kohleverbrennung ausgeht, nachzuweisen.[26] ProduktionsrĂŒckstĂ€nde und Emissionen können zu LangzeitschĂ€den und Altlasten fĂŒhren. Gleiches gilt bei unsachgemĂ€ĂŸer Entsorgung fĂŒr die Altzellen. Die Photovoltaik unterscheidet sich in diesem Aspekt von anderen Technologien zur Nutzung regenerativer Energien.

Sicherheitsbetrachtung

FĂŒr Schutzmaßnahmen im Brandfall und Blitzeinschlag, siehe Photovoltaikanlage.

Siehe auch

Literatur

  • Peter WĂŒrfel: Physik der Solarzellen. In: Spektrum. Akademischer Verlag, Heidelberg 2000, ISBN 3-8274-0598-X.
  • Guillermo Diaz-Santanilla: Technik der Solarzelle - physikalische Grundlagen, Eigenschaften und Applikationen. Franzis, MĂŒnchen 1984, ISBN 3-7723-7371-2.
  • Tom Markvart, Luis Castañer: Solar cells - materials, manufacture and operation. Elsevier, Oxford 2006, ISBN 1-85617-457-3.
  • Christoph Brabec: Organic photovoltaics - materials, device physics, and manufacturing technologies. Wiley-VCH, Weinheim 2008, ISBN 978-3-527-31675-5.

Weblinks

Einzelnachweise

  1. ↑ Orbital Sciences Corporation (Hrsg.): Dawn. Investigating the "Dawn" of Our Solar System (fact sheet). 2009 (englisch).
  2. ↑ Rolf Hug: Mitsubishi Electric entwickelt anwendungsreife Silizium-Solarzelle mit 18,6 % Wirkungsgrad. In: Der Solarserver. 25. MĂ€rz 2008, Abgerufen am 9. August 2009
  3. ↑ M. A. Green, K. Emery, D. L. King, Y. Hishikawa, W. Warta: Solar Cell Efficiency Tables (Version 28). In: Prog. Photovolt: Res. Appl. 14, 2006, S. 455–461, doi:10.1002/pip.720 (PDF, abgerufen am 22. April 2010).
  4. ↑ Michael D. Kelzenberg, Shannon W. Boettcher, Jan A. Petykiewicz, Daniel B. Turner-Evans, Morgan C. Putnam, Emily L. Warren, Joshua M. Spurgeon, Ryan M. Briggs, Nathan S. Lewis, Harry A. Atwater: Enhanced absorption and carrier collection in Si wire arrays for photovoltaic applications. In: Nat Mater. 9, Nr. 3, Februar 2010, S. 239–244, doi:10.1038/nmat2635.
  5. ↑ Sonnenpower light. Bild der Wissenschaft. 15. Februar 2010 (Nachrichtenmeldung).
  6. ↑ Weltrekord: 41,1 % Wirkungsgrad fĂŒr Mehrfachsolarzellen. In: pro-physik.de. Fraunhofer-Institut fĂŒr Solare Energiesysteme ISE, abgerufen am 9. August 2009.
  7. ↑ heise: 28,2 % Wirkungsgrad erreicht (abgerufen am 24. Juni 2011)
  8. ↑ a b Neuer Weltrekord mit effizienter Solarzelle. Zentrum fĂŒr Sonnenenergie und Wasserstoff-Forschung Baden-WĂŒrttemberg, 27. Juli 2010 (Pressemeldung, pdf-Datei, 77 kB)
  9. ↑ Solarmer Energy, Inc. Breaks Psychological Barrier with 8.13% OPV Efficiency, Pressemitteilung der Firma Solarmer Energy vom 27. Juli 2010 auf Forbes Businesswire, abgerufen am 30. August 2010
  10. ↑ Billig-Solarzellen revolutionieren Strombranche
  11. ↑ USGS Minerals Information
  12. ↑ Lars Fischer: Rohstoffe: Die Rohstoffkrisen der Zukunft, spektrum-direkt, 29. MĂ€rz 2011, Zugriff am 12. September 2011
  13. ↑ Indium VorrĂ€te laut USGS Mineral Commodity Summaries (2006), [1]
  14. ↑ Kazuo Nakajima, Noritaka Usami: Crystal Growth of Si for Solar Cells. Springer, 2009, ISBN 978-3642020438, S. 4–5.
  15. ↑ Silizium Herstellung - Bridgman-Verfahren Infoseite auf renewable-energy-concepts.com, abgerufen am 17. April 2010
  16. ↑ Kristallzucht Infoseite der Firma Swiss Wafers, abgerufen am 17. April 2010
  17. ↑ Quadrieren und Brikettieren Infoseite der Firma Swiss Wafers, abgerufen am 17. April 2010.
  18. ↑ Ziehen oder SĂ€gen – ein Systemvergleich
  19. ↑ Ziehen oder SĂ€gen – ein Systemvergleich
  20. ↑ Eicke Weber neuer Leiter des Fraunhofer-Instituts fĂŒr Solare Energiesysteme ISE. Fraunhofer-Gesellschaft. 6. Juli 2006, abgerufen am 22. April 2010 (Presseinformation).
  21. ↑ a b Michael D. Kelzenberg, Shannon W. Boettcher, Jan A. Petykiewicz, Daniel B. Turner-Evans, Morgan C. Putnam, Emily L. Warren, Joshua M. Spurgeon, Ryan M. Briggs, Nathan S. Lewis, Harry A. Atwater: Enhanced absorption and carrier collection in Si wire arrays for photovoltaic applications. In: Nature Materials. advance online publication, 2010, doi:10.1038/nmat2635.
  22. ↑ Christel Budzinski: Schwarz und effizient - Black Silicon fĂŒr Solarzellen. In: World of Photonics. Abgerufen am 19. Februar 2010.
  23. ↑ R. S. Wagner, W. C. Ellis: Vapor-liquid-solid mechanism of single crystal growth. In: Applied Physics Letters. 4, Nr. 5, 1964, S. 89–90, doi:10.1063/1.1753975.
  24. ↑ Christoph Seidler: Photovoltaik, Winzige SiliziumdrĂ€hte fangen Sonnenlicht ein. Spiegel Online, 15. Februar 2010, abgerufen: 19. Februar 2010.
  25. ↑ M. Powalla, B. Dimmler, R. SchĂ€ffler, G. Voorwinden, U. Stein, H.-D. Mohring, F. Kessler, D. Hariskos: CIGS solar modules - progress in pilot production, new developments and applications. In: 19th European Photovoltaic Solar Energy Conference, (2004) Paris (PDF).
  26. ↑ a b Vasilis M. Fthenakis, Hyung Chul Kim, Erik Alsema: Emissions from Photovoltaic Life Cycles. In: Environmental Science & Technology. 42, Nr. 6, 2008, S. 2168–2174 (PDF, doi:10.1021/es071763q).
  27. ↑ CSG Solar AG Discontinues Operations, Pressemeldung vom 1. Juli 2011
  28. ↑ Alok Jha: ‘Black silicon’ boosts solar cell efficiency. guardian.co.uk, 15. Oktober 2008.
  29. ↑ [2] Andreas MĂŒhlbauer, Neuer Solar-Konzentrator verspricht billigeren Strom, Elektronikpraxis, 23. Februar 2009
  30. ↑ [3] Tyler Hamilton, A Cheaper Solar Concentrator, Technology Review, 20 Feb 2009
  31. ↑ NREL: Concentrating Solar Power Research - Concentrating Photovoltaic Technology
  32. ↑ Weltrekord: 41,1 % Wirkungsgrad fĂŒr Mehrfachsolarzellen am Fraunhofer ISE
  33. ↑ Xiangnan Dang, Hyunjung Yi, Moon-Ho Ham, Jifa Qi, Dong Soo Yun, Rebecca Ladewski, Michael S. Strano, Paula T. Hammond, Angela M. Belcher: Virus-templated self-assembled single-walled carbon nanotubes for highly efficient electron collection in photovoltaic devices. In: Nature Nanotechnologie. 6, Nr. 6, 2011, S. 377–384, doi:10.1038/nnano.2011.50.
  34. ↑ Konarka verkĂŒndet VerfĂŒgbarkeit von Solarzellen fĂŒr portable LadegerĂ€te auf der European Photovoltaic Solar Energy Conference. Konarka, 20. September 2009, abgerufen am 9. Dezember 2009 (Pressemitteilung).
  35. ↑ Hybridsolarzellen auf der Basis von anorganischen Halbleiter-Nanopartikeln und leitfĂ€higen Polymeren. Carl von Ossietzky UniversitĂ€t Oldenburg. Institut fĂŒr Physik.
  36. ↑ http://www.ciphotonics.com/Press_Releases/TPV_Groundbreaking_thermo_photovoltaic.pdf PDF-Datei zu Thermischen Photovoltaikzellen (engl.)
  37. ↑ Spacecraft and Instruments
  38. ↑ Monokristalline Solarzellen aus Silizium Artikel auf solarintegration.de, abgerufen am 6. Juni 2010
  39. ↑ Detailliertere Berechnung hier: http://www.rechner-photovoltaik.de/rechner/solardegradation
  40. ↑ M. Sheoran, A. Upadhyaya, A. Rohatgi: A Comparison of Bulk Lifetime, Efficiency, and Light-Induced Degradation in Boron- and Gallium-Doped Cast mc-Si Solar Cells. In: Electron Devices, IEEE Transactions on. 53, Nr. 11, 2006, S. 2764–2772, doi:10.1109/TED.2006.883675.
  41. ↑ S. W. Glunz, S. Rein, J. Knobloch, W. Wettling, T. Abe: Comparison of boron- and gallium-doped p-type Czochralski silicon for photovoltaic application. In: Progress in Photovoltaics: Research and Applications. 7, Nr. 6, 1999, S. 463–469, doi:10.1002/(SICI)1099-159X(199911/12)7:6<463::AID-PIP293>3.0.CO;2-H.
  42. ↑ Lisa Eccles, Jason George, Miki Tsukamoto, Hai Yue Han: Comparison Study of Current Photovoltaic Technologies for Use on a Solar Electric Vehicle. 2006, archiviert vom Original am 16. September 2006, abgerufen am 22. April 2010 (PDF, englisch).
  43. ↑ PVX Spotmarkt Preisindex Solarmodule
  44. ↑ Solarbuzz Module Price Trend
  45. ↑ US Solarcell Design Hits 40 Precent Efficiency
  46. ↑ Technical and Quality Management - Home - European solar cell efficiency reaches new high
  47. ↑ V. Quaschning: Energieaufwand zur Herstellung regenerativer Anlagen. 2002, Abgerufen am 10. August 2009.
  48. ↑ Mariska de Wold-Scholten [http://smartgreenscans.nl/publications/deWildScholten-2011-Environmental-profile-of-PV-mass-production--presentation.pdf Environmental profile of PV mass production: globalization, 2011.
  49. ↑ Mariska de Wild-Scholten, Erik Alsema: Energetische Bewertung von PV-Modulen (PDF-Datei, 1,52 MB), Energy Research Centre of the Netherlands (ECN), Unit Solar Energy und Copernicus Institut, UniversitĂ€t Utrecht
  50. ↑ Nicole Vormann; Murphy&Spitz: Studie: Nachhaltigkeit und Social Responsibility in der Photovoltaik-Industrie. Januar 2010, abgerufen am 4. MĂ€rz 2010 (Studie).
  51. ↑ Eine typische CdTe-Solarzelle besteht aus fĂŒnf Einzelschichten. Im Einzelnen sind das eine ca. 8 ÎŒm dicke CdTe-Absorberschicht, eine ca. 100 nm dicken CdS-Zwischenschicht sowie zwei 20 bzw. 100 nm dicken Te- und Antimontellurid (Sb2Te3-DĂŒnnschichten
  52. ↑ BIA-Report: Arbeitsbedingte Gesundheitsgefahren durch Cadmium- und Arsenexposition. Epidemiologische Erkenntnisse zur KarzinogenitĂ€t. (Symposium) 15./16. Feb. 2001, BGA, Hennef.
  53. ↑ D. L. Morgan, C. J. Shines, S. P. Jeter, M. E. Blazka, M. R.Elwell, R. E. Wilson, S. M. Ward, H. C. Price, P. D. Moskowitz: Comparative Pulmonary Absorption, Distribution, and Toxicity of Copper Gallium Diselenide, Copper Indium Diselenide, and Cadmium Telluride in Sprague-Dawley Rats. In: Toxicology & Applied Pharmacology. 147, Nr. 2, 1997, S. 399–410.
  54. ↑ V. M. Fthenakis, S. C. Morris, P. D. Moskowitz, D. L. Morgan: Toxicity of cadmium telluride, copper indium diselenide, and copper gallium diselenide. In: Progress in Photovoltaics - Research and Applications. 7, Nr. 6, 1999, S. 489–497.
  55. ↑ Reducing the Potential Risk of Developing Cancer from Exposure to Gallium Arsenide in the Microelectronics Industry. In: DHHS (NIOSH) Publication No. 88-100. NIOSH ALERT, Okt. 1987 (Online).
  56. ↑ Akiyo Tanaka: Toxicity of indium arsenide, gallium arsenide, and aluminium gallium arsenide. In: Toxicology & Applied Pharmacology. 198, Nr. 3, 2004, S. 405–411 (doi:10.1016/j.taap.2003.10.019).

Wikimedia Foundation.

Synonyme:

Schlagen Sie auch in anderen WörterbĂŒchern nach:

  • Solarzelle — Sonnenkollektor; Solarkollektor * * * So|lar|zel|le 〈f. 19âŒȘ Halbleiterbauelement zur direkten Umwandlung von Strahlungsenergie (der Sonne) in elektr. Energie; Sy Sonnenzelle * * * So|lar|zel|le [lat. solaris = Sonnen
 (sol = Sonne)]: svw. ↑… 
   Universal-Lexikon

  • Solarzelle — saulės elementas statusas T sritis automatika atitikmenys: angl. solar cell vok. Solarzelle, f rus. ŃĐŸĐ»ĐœĐ”Ń‡ĐœŃ‹Đč ŃĐ»Đ”ĐŒĐ”ĐœŃ‚, m pranc. cellule solaire, f; Ă©lĂ©ment solaire, m 
   Automatikos terminĆł ĆŸodynas

  • Solarzelle — So·laÌČr·zel·le die; ein technisches GerĂ€t (eine Fotozelle), das Sonnenlicht in elektrischen Strom verwandelt || K : Solarzellenbatterie, Solarzellenrechner 
   Langenscheidt Großwörterbuch Deutsch als Fremdsprache

  • Solarzelle — So|lar|zel|le 〈f.; Gen.: , Pl.: n; PhysikâŒȘ Halbleiterbauelement zur direkten Umwandlung von Strahlungsenergie (der Sonne) in elektrische Energie auf fotoelekt. Wege durch Freisetzen von Elektronen im Innern, Sonnenzelle 
   Lexikalische Deutsches Wörterbuch

  • Solarzelle — So|lar|zel|le die; , n: Sonnenzelle; ↑Element aus bestimmten Halbleitern, das die Energie der Sonnenstrahlen in elektr. Energie umwandelt 
   Das große Fremdwörterbuch

  • Solarzelle — So|lar|zel|le 
   Die deutsche Rechtschreibung

  • Organische Solarzelle — Ein kommerziell erhĂ€ltliches flexibles Modul einer polymeren organischen Solarzelle. Eine organische Solarzelle ist eine Solarzelle, die aus Werkstoffen der organischen Chemie besteht, d. h. aus Kohlenwasserstoff Verbindungen (Kunststoffen) 
   Deutsch Wikipedia

  • Tandem-Solarzelle — Eine Tandem Solarzelle (auch: Stapelsolarzelle, Mehrfachsolarzelle[1], engl: multi junction solar cell) besteht aus zwei oder mehr Solarzellen mit verschiedenem Material, die monolithisch ĂŒbereinander geschichtet sind. Zweck dieser Anordnung ist… 
   Deutsch Wikipedia

  • CIGSSe-Solarzelle — CIGS (auch CIGSSe oder CIS) steht fĂŒr Cu(In,Ga)(S,Se)2 und ist eine DĂŒnnschichttechnologie fĂŒr Solarzellen und steht als AbkĂŒrzung fĂŒr die verwendeten Elemente Kupfer, Indium, Gallium, Schwefel und Selen (engl. copper, indium, gallium, sulfur,… 
   Deutsch Wikipedia

  • CIS-Solarzelle — CIGS (auch CIGSSe oder CIS) steht fĂŒr Cu(In,Ga)(S,Se)2 und ist eine DĂŒnnschichttechnologie fĂŒr Solarzellen und steht als AbkĂŒrzung fĂŒr die verwendeten Elemente Kupfer, Indium, Gallium, Schwefel und Selen (engl. copper, indium, gallium, sulfur,… 
   Deutsch Wikipedia


Share the article and excerpts

Direct link

 Do a right-click on the link above
and select “Copy Link”

We are using cookies for the best presentation of our site. Continuing to use this site, you agree with this.