Metastabiler Zustand


Metastabiler Zustand

Metastabilität ist eine schwache Form der Stabilität. Ein metastabiler Zustand ist stabil gegen kleine Änderungen, aber instabil gegenüber größeren Änderungen.

Ein metastabiles System: Zustand 1 ist gegenüber kleinen Störungen stabil und geht bei großen Störungen in Zustand 3 über. Zustand 2 ist labil.
Ein labiles System verlässt seinen Ausgangszustand nach einer infinitesimalen Störung und kehrt nicht zurück.
Viele natürliche Systeme sind metastabil, Verbrennungen laufen deshalb erst nach einer ausreichenden Aktivierung ab.

Ein Beispiel dafür ist das System "Holz und Luftsauerstoff" bei Raumtemperatur: Aus thermodynamischer Sicht würde das spontane Verbrennen des darin chemisch gebundenen Kohlenstoffs mit dem Sauerstoff zu Kohlenstoffdioxid zu einem stabileren Zustand führen. Ohne eine Aktivierung, also eine ausreichend große Energiezufuhr wie das Entzünden des Holzes, wird dies aber nicht passieren.

Anschaulich dargestellt ist das im Bild rechts: Ein Ball liegt in einer kleinen Mulde an einem Berghang. Solange der Ball nur wenig in der Mulde ausgelenkt wird, rollt er an ihre tiefste Stelle zurück. Dieses nennt man „lokales Minimum“. Wird er aber stärker ausgelenkt, kann er den Berghang hinunterrollen. Zuerst muss also eine gewisse Mindestenergie aufgebracht werden, bevor sich der Zustand des Systems ändert.

Die schwächste Form der Metastabilität ist Labilität. Ein labiles System verliert seinen Ausgangszustand nach einer beliebig kleinen (infinitesimalen) Störung.

Inhaltsverzeichnis

Thermodynamik

Metastabile Phasen haben eine höhere Energie (korrekter: Freie Enthalpie – unter definierten Bedingungen wie konstanter Druck und konstante Temperatur) als die stabile Phase. Auf Grund einer hohen Aktivierungsenergie wandeln sie sich nicht oder nur langsam in die stabile Phase um.

Ein Beispiel für eine metastabile Phase ist der Diamant, der sich spontan in Graphit verwandeln kann; die Wahrscheinlichkeit dafür ist allerdings bei Zimmertemperatur verschwindend klein. Ein anderes Beispiel ist die Zinnpest. Die metallische Phase des Zinns wird unterhalb von 13°C metastabil und wandelt sich langsam in die bei diesen Temperaturen stabilere nichtmetallische Phase um.

Atomphysik, Festkörperphysik

In der Atomphysik ist ein metastabiler Zustand ein angeregter Zustand der Atomhülle, der nicht in der sonst üblichen, sehr kurzen Zeit von weniger als einer Mikrosekunde durch spontane Emission von Photonen (Dipolstrahlung) in den Grundzustand zurückfällt. Dies erklärt sich durch entgegenstehende Auswahlregeln. Der Zerfall eines metastabilen Zustands wird manchmal als verbotener Übergang bezeichnet. Beispiele:

Metastabile Zustände von Atomen sind Voraussetzung des Lasers.

Kernphysik

Obwohl die Auswahlregeln bei Atomkernen viel mehr Übergänge und Zerfälle erlauben als in der Atomhülle, gibt es auch bei Atomkernen als metastabil bezeichnete Zustände, die Kernisomere. Beispiele (in Klammern die Halbwertszeit für den Übergang zum Grundzustand unter Gamma-Emission):

Digitale Schaltungen

In der Digitaltechnik gibt es Schaltungen, die zu einem bestimmten Zeitpunkt eine binäre Information speichern sollen (0 oder 1). Die einfachste Form eines solchen Flip-Flops besteht dabei aus einem Ring aus zwei Invertern. Diese rückgekoppelte Schaltung hat zwei stabile Zustände, 0 und 1, also nahe der unteren und nahe der oberen Betriebsspannung. Bei einer leichten Störung einer Leitung kehrt die Schaltung immer in den jeweiligen stabilen Zustand zurück, das macht den speichernden Effekt der Schaltung aus. Zusätzlich gibt es einen metastabilen Punkt, etwa in der Mitte der Betriebsspannung. Idealisiert könnte die Schaltung auch in diesem Punkt verharren. Effekte wie Rauschen, Störungen usw. werden sie jedoch schließlich (meist innerhalb einiger Nanosekunden) in einen der stabilen Zustände kippen lassen. Es lässt sich nur in einem statistischen Sinn vorhersagen, nach welcher Zeit dies erfolgen wird. Der typische Problemfall ist die Abtastung eines fluktuierenden Signals. Ist das Signal genügend nahe an 0 oder 1, so wird das Flip-Flop diesen Zustand erwartungsgemäß ohne Probleme speichern. Nähert sich die Eingangsspannung jedoch einem bestimmten Bereich, so ist zu beobachten, dass

  1. das Flip-Flop sich nicht immer für den "richtigen" Zustand entscheidet
  2. schlimmer noch, das Flip-Flop selbst für unbestimmte Zeit im metastabilen Zustand verharrt.

Daraus können schwerwiegende Fehlfunktionen von Schaltungen resultieren. Kritisch ist weniger, dass sich das Flip-Flop nicht für den "richtigen" Zustand entscheidet, sondern dass es für eine unbestimmte Zeit im metastabilen Zustand verbleibt. Damit kann es am Ausgang eine Spannung ausgeben, die zwischen den beiden digitalen Spannungspegeln liegt, was in nachgeschaltenen Flip-Flops wiederum zu metastabilen Zuständen und Fehlern führen kann. Damit sind die für die Taktberechnung notwendigen Zeitbedingungen, man spricht auch von den Setup- und Hold-Zeiten, für die nächsten Flip-Flop-Stufen unter Umständen verletzt.

Wesentlich ist, dass sich die metastabile Situation durch keine wie auch immer geartete Maßnahme vermeiden lässt. Jeder "Lösungsvorschlag" in dieser Richtung beruht stets auf einem Denkfehler, der das Auftreten der Metastabilität an irgendeiner Stelle ignoriert. Durch das Hintereinanderschalten von mehreren Abtaststufen (Flip-Flops) kann lediglich die Wahrscheinlichkeit des Fehlers beliebig stark reduziert werden.

Siehe auch


Wikimedia Foundation.


Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”

We are using cookies for the best presentation of our site. Continuing to use this site, you agree with this.