Modus tollens


Modus tollens

Modus tollens (lat. für: Modus des Aufhebens, wörtlich: aufhebender Modus), eigentlich Modus tollendo tollens (in Abgrenzung zum Modus ponendo tollens) ist eine Schlussfigur, die auch in etlichen Kalkülen der klassischen Logik als Schlussregel verwendet wird.

Er besagt, dass aus den Voraussetzungen nicht B und Wenn A, dann B auf nicht A geschlossen werden kann.

Der Modus tollendo tollens ist damit ein Gegenstück zum Modus ponendo ponens.

Die Prämissen

A → B
¬B

lassen also die Conclusio

¬A

ziehen.

Der lateinische Name Modus tollendo tollens, „durch Aufheben aufhebende Schlussweise“ erklärt sich daraus, dass es sich um eine Schlussfigur (modus) handelt, die bei gegebener erster Prämisse, A → B, durch das „Aufheben“ (tollendo) des Satzes B, also durch das Setzen seiner Verneinung, ¬B, einen anderen Satz, nämlich A, ebenfalls „aufhebt“ (tollens), also zu seiner Verneinung, ¬A, führt.

Inhaltsverzeichnis

Als Aussage

Obwohl der Modus tollendo tollens eine Schlussregel, also ein metasprachliches Konzept ist, wird die Bezeichnung "Modus tollens" gelegentlich auch für objektsprachliche Ausdrücke mit der folgenden Gestalt verwendet:

(¬B ∧ (A → B)) → ¬A

Da aber Schlussregeln und Aussagen ganz unterschiedliche Konzepte sind, ist es wissenschaftlich eher unglücklich, sie mit derselben Bezeichnung zu benennen. Generell ist die Vermischung von Objekt- und Metasprache problematisch und sollte normalerweise unterbleiben.

Beispiel

Aus den Voraussetzungen Wenn es regnet, ist die Straße nass und Die Straße ist nicht nass lässt sich der logische Schluss Es regnet nicht ziehen. Hingegen ist die Schlussrichtung Die Straße ist nass, daher regnet es unzulässig und falsch.

Bedeutung des Modus tollens

Nach dem Kritischen Rationalismus ist der Modus tollens die Grundlage der wissenschaftlichen Forschung. Dabei ist A eine abstrakte hypothetische Theorie, B ein Beobachtungssatz, der aus der Theorie folgt. Wissenschaftliche Experimente haben die Funktion, durch Beobachtung festzustellen, ob B wahr oder falsch ist. Ist B falsch, dann auch die ihm zugrundeliegende Theorie, diese ist dann falsifiziert.

Siehe auch


Wikimedia Foundation.

Schlagen Sie auch in anderen Wörterbüchern nach:

  • Modus Tollens — (lat. für: Modus des Aufhebens, wörtlich: aufhebender Modus), eigentlich Modus tollendo tollens (in Abgrenzung zum Modus ponendo tollens) ist eine Schlussfigur, die auch in etlichen Kalkülen der klassischen Logik als Schlussregel verwendet wird.… …   Deutsch Wikipedia

  • Modus tollens — Modus tollens  рассуждение от противного (латинское «modus tollendo tollens» означает «путь исключения исключений»). Форма записи: . Например, золотая монета, сминаема зубами, тогда modus tollens: среди всех объектов, не сминаемых зубами,… …   Википедия

  • modus tollens — [mɔdystɔlɛ̃s] n. m. ÉTYM. Loc. lat., littéralement « mode qui supprime ». ❖ ♦ Log. Règle de déduction selon laquelle, si une proposition A implique une proposition B, on peut déduire, B n étant pas vraie, que A ne l est pas non plus. || Le modus… …   Encyclopédie Universelle

  • Modus Tollens —  ♦ Modus Tollens    Верное заключение, приводящее к выводу о ложности посылки исходя из ложности по меньшей мере одного из ее следствий и принимающее форму: если р, то q; однако не q, следовательно, не р. Например: если Сократ бог, то он… …   Философский словарь Спонвиля

  • Modus tollens — Rules of inference Propositional calculus Modus ponens (A→B, A ⊢ B) Modus tollens (A→B, ¬B ⊢ ¬A) …   Wikipedia

  • Modus tollens — Proposition contraposée La contraposition (ou modus tollens) est un type de raisonnement logique consistant à affirmer une implication (« si A alors B ») et à poser ensuite la négation du conséquent (« or, non B ») pour en… …   Wikipédia en Français

  • modus tollens — noun A valid form of argument in which the consequent of a conditional proposition is denied, thus implying the denial of the antecedent. Modus tollens has this form: 1. If P, then Q. See Also: modus ponens …   Wiktionary

  • modus tollens — Common shorthand for ‘modus tollendo tollens’, the principle of inference entitling us to pass from not q, and p →q, to not p …   Philosophy dictionary

  • Modus Tollens — Grundregel der Logik: Wenn gilt „aus A folgt B“ und „B ist falsch“, dann gilt auch „A ist falsch“. M.T. findet bei ⇡ wissensbasierten Systemen bisher kaum Verwendung. Vgl. auch ⇡ Modus Ponens …   Lexikon der Economics

  • modus tollens — …   Useful english dictionary


Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”

We are using cookies for the best presentation of our site. Continuing to use this site, you agree with this.